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Abstract

In the burgeoning field of deep learning, fueled by recent advancements in generative technolo-

gies, there is a significant increase in model and data scales, leading to escalated training costs.

Yet, understanding the intricate training dynamics of neural networks remains a challenging the-

oretical endeavor. This thesis explores these dynamics through the lens of continual learningwith

deep linear networks, focusing on the stability of training with respect to critical failure modes

such as Catastrophic Forgetting and rank underestimation, which we term Catastrophic Weight

Loss.

We employ projections to formalize the continual learning process, enabling a detailed exami-

nation of the effects of common training practices such as stochastic gradient descent (SGD) with

small batch sizes, and lifelong learning in environments with non-stationary input distributions.

Our findings reveal that standard techniques such as weight decay, small batch sizes, and 1-pass

training exacerbate the likelihood of catastrophic events. However, our analysis suggests that

Catastrophic Forgetting does not unequivocally hinder learning progress. In fact, if the training

dynamics are stable, models continue to evolve towards a more accurate representation of the

set of previously seen tasks, despite apparent setbacks. This insight challenges the traditional

view of Catastrophic Forgetting as purely detrimental, suggesting it can be effectively managed

with targeted interventions such as data replay. This reevaluation provides a fresh perspective on

enhancing the resilience and effectiveness of training protocols in large-scale neural networks.
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1 | Introduction

1.1 Continual Learning

Continual learning, also known as lifelong learning, represents a significant challenge and a vi-

brant area of interest in artificial intelligence. This paradigm enables a model to learn continually

from a stream of data, assimilating new knowledge while preserving previously acquired infor-

mation. The concept of catastrophic forgetting in multitask sequential learning, pivotal to contin-

ual learning, emerged in the late 1980s and early 1990s with foundational papers by McCloskey

and Cohen (1989) [McCloskey and Cohen 1989] and Ratcliff (1990) [Ratcliff 1990]. Subsequent

research, often under the broader umbrella of transfer learning, has further explored these dy-

namics ([Pratt 1993],[Suddarth and Holden 1991],[Caruana 1993]). Initial strategies to mitigate

catastrophic forgetting, such as replay methods ([Robins 1995]), have evolved with the resur-

gence of deep learning, leading to sophisticated techniques like Elastic Weight Consolidation

(EWC) [Kirkpatrick et al. 2017] and Synaptic Intelligence [Zenke et al. 2017].

Despite advancements, the theoretical exploration of catastrophic forgetting primarily fo-

cuses on model losses rather than structural changes within the model that precipitate forgetting.

Viewed through the lens of online learning, the issue of forgetting is often analyzed through re-

gret minimization frameworks ([Abernethy et al. 2011], [Shimkin 2016]), with techniques such as

AdaGrad [Duchi et al. 2011] and RMSProp [Tieleman 2012] providing foundational methods in

online convex optimization. In continual learning, however, the assumption that the underlying
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function remains stationary adds another constraint to the optimization that these online convex

optimization algorithms are not quick to take advantage of, thereby explaining the occurrence

and challenge of forgetting. This dilemma typically necessitates re-acquaintance with previous

tasks, allowing the model to refine its approach toward a higher-rank, more stable solution.

Recent studies ([Zhang et al. 2020], [Zhang et al. 2022]) have begun to challenge the traditional

narrative of catastrophic forgetting, suggesting that significant forgetting can occur with mini-

mal changes in the features themselves, particularly in contexts related to transfer and feature

learning.

1.2 Deep Linear Networks

In parallel to continual learning, the theory of deep linear networks has developed, albeit more

subtly compared to nonlinear models. Deep linear networks—neural networks characterized by

linear activation functions—offer a simplified yet powerful framework for analyzing deeper, more

complex architectures. These networks provide critical insights into neural behavior, learning

dynamics, loss landscapes, and capacity constraints. Despite their simplicity, they reveal com-

plex learning behaviors and theoretical nuances applicable to broader model classes. Therefore,

this thesis employs deep linear networks to investigate continual learning dynamics, inspired by

significant findings such as those by Kawaguchi (2016), which demonstrated that the loss sur-

face of these networks comprises a single global minimum amidst a landscape of saddle points

[Kawaguchi 2016].

Research into the low-rank bias of these networks ([Wang and Jacot 2023], [Li et al. 2021]),

along with studies on their task alignment ([Ji and Telgarsky 2019]) and dynamic properties ([Ja-

cot et al. 2022]), further underscores their relevance and potential for elucidating complex learn-

ing phenomena.
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1.3 Projections

Projection techniques have long been instrumental across various disciplines, aiding in the sim-

plification of high-dimensional spaces and the optimization of complex functions. In continual

learning, projections helpmanage the discrete and iterative nature of task learning by segmenting

the function space into task-specific subspaces. This partitioning, crucial for minimizing interfer-

ence among tasks, aligns closely with observed forgetting behaviors. Notably, projections used in

this context are not strictly orthogonal, highlighting potential overlaps and interferences between

tasks.

This thesis also reflects on the training methodologies of foundational models like Large Lan-

guage Models (e.g., LLaMA 2 [Touvron et al. 2023]), emphasizing similarities with SGD applica-

tions that incorporate weight decay but not more advanced techniques like EWC.

By intertwining continual learning with deep linear network theory and projection methods,

this work aims to forge a deeper understanding of both domains while addressing the challenges

inherent in learning within dynamic environments. This synthesis promises not only enhanced

theoretical insight but also practical strategies for developing robust models capable of adapting

over time without compromising on previously mastered capabilities.
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2 | Preliminaries

Let us solve a learning problem using gradient descent. We are given a model 𝑓 (𝜃 ) to optimize

using the cost function𝐶 for a dataset (𝑋,𝑌 ) ∈ R𝑁×𝑑×R𝑁×𝑑 , where𝑁 is the number of datapoints

and 𝑑 is the dimensionality of the data. Let’s start by making the simplifying assumptions that 𝑌

is generated by a linear function of the data 𝑌 = 𝑋𝐴∗ for some unknown 𝐴∗. We are interested

in using a deep linear network as our model

𝑓 (𝜃 ) =𝑊1 ·𝑊2 · · ·𝑊𝐿−1 ·𝑊𝐿 = 𝐴𝜃 (2.1)

where 𝐿 is the depth of the network. Lastly, for our cost function, we will study the most common

loss function - the squared loss - with L2 regularization. The squared loss is usually expressed as

follows, where | | · | | denotes the Frobenius norm.

L(𝑓 ) = 1
2
| |𝑓 (𝑋, 𝜃 ) − 𝑌 | |2

Since 𝑌 is generated by some linear mapping 𝐴∗, we can simplify the cost function.

𝐶 (𝑋, 𝜃, 𝜆) = 1
2
| |𝑋 (𝐴𝜃 −𝐴∗) | |2 + 𝜆

𝐿∑︁
ℓ=1
| |𝑊ℓ | |2

The problem of continual learning stems from sequentially learning different subsets of the

input space. To reflect that in our analysis, wewill project our full-batch of data, which is assumed
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to be full rank, into a subspace using a projection matrix 𝑃 . The resulting data 𝑃𝑋 is a mini-batch

and is assumed to be rank 𝑟 < 𝑑 . In our analysis, we will exclusively use orthogonal projection

matrices, thus the image of 𝑃 is orthogonal to its kernel (see Appendix A for more details about

projection matrices).

The term episodes will refer to an uninterrupted period of training using projection 𝑃𝑖 , for

episode 𝑖 . Consider 𝑃𝑖 to be the task of episode 𝑖 . Note the case of training on a single datapoint

𝑥𝑖 is the same as training on a rank-1 projection 𝑃 =
𝑥𝑖𝑥

𝑇
𝑖

| |𝑥𝑖 | |2 . This case becomes relevant when

studying the effect of stochastic gradient descent (SGD) with small batch sizes.

In the context of our optimization problem, we are trying to minimize the cost 𝐶 (𝑃, 𝜃, 𝜆).

Since 𝑋 is assumed to be full rank, our optimization is independent of the data. We can define

our optimization problem as follows:

min
𝜃

𝐶 (𝑃, 𝜃, 𝜆) = min
𝜃

1
2
| |𝑃 (𝐴𝜃 −𝐴∗) | |2 + 𝜆

𝐿∑︁
ℓ=1
| |𝑊ℓ | |2 (2.2)

This thesis will focus on the dynamics of our model𝐴𝜃 when going from one training episode

to the next. Ideally, 𝐴𝜃 should approach 𝐴∗ if the union of training episodes span the entire

input space. Catastrophic forgetting occurs when the loss associated to prior tasks𝐶 (𝑃𝑖, 𝜃, 0) has

increases significantly due to having trained on other tasks more recently. Note that the loss in

this context can be expressed as the unregularized cost, where 𝜆 = 0. Formally, we can express

the forgetting F exhibited for task 𝑃𝑖 as the difference between the loss of task 𝑃𝑖 using the most

current model 𝐴𝜃 and the loss achieved at the end of the original episode 𝑖 , namely 𝐶𝑖 , that the

task was being trained on.

F (𝑃𝑖,𝐶𝑖, 𝜃 ) = 𝐶 (𝑃𝑖, 𝜃, 0) −𝐶𝑖 (2.3)
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3 | Single-Layer Case

To form reasonable expectations for the behavior of deep linear networks, let’s start by analyzing

the problem in its simplest case, where 𝐿 = 1. In the single-layer case the unregularized cost

function is convex, allowing gradient descent to converge to the globalminimum for each episode.

Proof. The unregularized cost function is the Frobenius norm squared of a linear combination of

matrix 𝐴𝜃 . As a Frobenius norm, it can expressed as the following sum.

𝐶 (𝑃, 𝜃, 𝜆 = 0) = 1
2

∑︁
(𝑖, 𝑗)

(∑︁
𝑘

𝑃𝑖𝑘 (𝐴𝜃,𝑘 𝑗 −𝐴∗,𝑘 𝑗 )
)2

As the sum of convex functions, the cost is convex. □

3.1 Single episode dynamics

Although the training dynamics of the model follow gradient descent, the gradient function

∇𝐶 (𝜃 ) changes discontinuously from one episode to the next due to the sudden change in task 𝑃𝑖 .

To analyze the dynamics of the model for the entire training period, let’s start by analyzing the

dynamics for a given episode. Within a given episode 𝑖 , the dynamics of the model are as follows.
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𝑑𝐴𝜃

𝑑𝑡
= −∇𝜃𝐶 (𝑃𝑖, 𝜃, 𝜆)

= 𝑃 (𝐴∗ −𝐴𝜃 ) − 2𝜆𝐴

Let 𝐴0 be the initialization of 𝐴𝜃 at time 𝑡 = 0. Note that in the unregularized case where

𝜆 = 0 the dynamics exist only along its projection in the current task. As an important baseline,

we are interested in whether the model gets closer to the true function 𝐴∗.

Proposition 3.1. Each unregularized gradient descent step can only get the model𝐴𝜃,𝑡 closer to the

true function 𝐴∗.

Proof. Induction

| |𝐴𝜃,𝑡+1 −𝐴∗ | |2 = | |𝐴𝜃,𝑡 − 𝜂𝑃 (𝐴∗ −𝐴𝜃,𝑡 −𝐴∗) | |2

= | | (𝐼 − 𝜂𝑃) (𝐴𝜃,𝑡 −𝐴∗) | |2

= Tr((𝐴𝜃,𝑡 −𝐴∗)𝑇 (𝐼 − 𝜂𝑃)𝑇 (𝐼 − 𝜂𝑃) (𝐴𝜃,𝑡 −𝐴∗))

= | |𝐴𝜃,𝑡 −𝐴∗ | |2 − 𝜂 (2 − 𝜂) | |𝑃 (𝐴𝜃,𝑡 −𝐴∗) | |2

For 𝜂 ∈ [0, 2],

| |𝐴𝜃,𝑡+1 −𝐴∗ | |2 ≤ ||𝐴𝜃,𝑡 −𝐴∗ | |2

□

Although we prove that each unregularized gradient descent step makes progress towards

the true function, it doesn’t prove convergence. Let’s start by finding the convergence point of a

single episode by solving for𝐴𝜃 (𝑡). We can solve for𝐴𝜃 (𝑡) analytically by separating the problem

along the image and kernel of the task respectively.

Proposition 3.2. In a given episode, the weights along the kernel of the task only experience decay.
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Proof. The task defined by its projection 𝑃 , has a kernel characterized by (𝐼 − 𝑃)

𝑑 (1 − 𝑃)𝐴𝜃

𝑑𝑡
= (𝐼 − 𝑃)𝑃 (𝐴∗ −𝐴𝜃 ) − 2𝜆(𝐼 − 𝑃)𝐴

= −2𝜆(𝐼 − 𝑃)𝐴𝜃

(1 − 𝑃)𝐴𝜃 (𝑡) = (𝐼 − 𝑃)𝐴0𝑒
−2𝜆

□

Proposition 3.3. In a given episode, the weights along the image of the task converge exponentially

to 𝑃 𝐴∗
1+2𝜆 .

Proof. This proof follows similarly the proof for Proposition 3.2, where now we are interested in

the time varying dynamics of 𝑃𝐴𝜃 .

𝑑𝑃𝐴𝜃

𝑑𝑡
= 𝑃𝑃 (𝐴∗ −𝐴𝜃 ) − 2𝜆𝑃𝐴

= 𝑃𝐴∗ − (1 + 2𝜆)𝑃𝐴𝜃

𝑃𝐴𝜃 (𝑡) = 𝑃
𝐴∗

1 + 2𝜆 + 𝑃
(
𝐴0 −

𝐴∗
1 + 2𝜆

)
𝑒−(1+2𝜆)𝑡

□

The full parameter space can be described by the union of the dynamics within the image

space, given in Proposition 3.3, and that of the kernel space provided in Propositions 3.2. Due

to the orthogonality between these two spaces, the full dynamics for a single episode can be

expressed as the sum of the dynamics above.

𝐴𝜃,𝑡 = 𝑃
𝐴∗

1 + 2𝜆 + 𝑃
(
𝐴0 −

𝐴∗
1 + 2𝜆

)
𝑒−(1+2𝜆)𝑡 + (𝐼 − 𝑃)𝐴0𝑒

−2𝜆𝑡 (3.1)

In the regularized setting, where 𝜆 > 0, the first term of the full dynamics is constant, and

all the other terms are decaying exponentially to zero. Thus, in the limit as 𝑡 goes to infinity,
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the model will converge to 𝑃
𝐴∗
1+2𝜆 . Remark first that the use of weight decay applies a shrinking

factor 1
1+2𝜆 to the unregularized target 𝑃𝐴∗. This shrink is typical of weight decay in general

as it attracts any solution radially towards the origin. Additionally, remark that in this case the

model converges to a matrix which is independent of the model’s initialization. That proves that

single-layer, single-episode, regularized problem has a unique solution.

Unfortunately, the unique solution is not a good one. As a reminder, we generally assume that

𝐴∗ is full rank, and the projection 𝑃 is rank deficient, which means that the unique solution is

rank deficient compared to the true task𝐴∗. Moreover, the unique solution being independent of

the model’s initialization means that if each episode was trained to convergence, the final model

would only be a function of the final task that it was trained on.

However, note that this issue of uniqueness was created in part because of the use of weight

decay as a regularizer. Without it, when 𝜆 = 0, the single episode dynamics converge instead

to 𝑃𝐴∗ + (𝐼 − 𝑃)𝐴0. This is good news because we are maintaining the information from previ-

ous episodes. In the next section, we will unpack how this preservation translates into overall

performance.

3.2 Consecutive episode dynamics

When training a model for multiple episodes, assuming that each episode is trained to conver-

gence, we can express the state of the model after 𝑘 episodes of 𝜆 = 0 as

𝐴𝜃,𝑘 = 𝑃𝑘𝐴∗ + (𝐼 − 𝑃𝑘)𝐴𝜃,𝑘−1

The unregularized dynamics visualized in Figure 3.1 shows the iterative convergence to the

true function 𝐴∗ by alternating between the kernel of the two tasks being represented. We can

see that the speed to converge depends on the angle between the two kernels. As the angle gets

9



(a) Dynamics starting with the blue task (b) Dynamics starting with the red task

Figure 3.1: Unregularized dynamics for alternating pair of tasks in matrix space

smaller, it is as if the two projections are approximately equivalent which makes it difficult to

learn. Whereas two orthogonal kernels would achieve convergence immediately upon training

both once. Nevertheless, as noted previously, if there is any weight decay then the state of the

model will be 𝐴𝜃,𝑘 = 𝑃𝑘𝐴∗, and there will be no convergence too the full rank 𝐴∗.

Proposition 3.4. The state of the model after 𝑘 episodes of unregularized training can be expressed

explicitly as

𝐴𝜃,𝑘 =

(
𝑘∏
𝑖=1
(𝐼 − 𝑃𝑘)

)
(𝐴0 −𝐴∗) +𝐴∗

where
∏

is the recursive left-multiply operator.

Proof. We have that the state of the model can be written as the sequence

𝐴𝜃,𝑘 = 𝑃𝑘𝐴∗ + (𝐼 − 𝑃𝑘)𝐴𝜃,𝑘−1

10



By grouping up terms, we can reformulate the sequence explicitly as

𝐴𝜃,𝑘 =

(
𝑘∏
𝑖=1
(𝐼 − 𝑃𝑖)

)
𝐴0 +

𝑘∑︁
𝑖=1

(
𝑘∏

𝑗=𝑖+1
(𝐼 − 𝑃 𝑗 )

)
𝑃𝑖𝐴∗

From here, we can prove by induction that

𝐼 −
𝑘∑︁
𝑖=1

(
𝑘∏

𝑗=𝑖+1
(𝐼 − 𝑃 𝑗 )

)
𝑃𝑖 =

𝑘∏
𝑖=1
(𝐼 − 𝑃𝑖)

At initialization, for 𝑘 = 1, we trivially have 𝐼 − 𝑃1 = 𝐼 − 𝑃1.

For the inductive step, we need to show that the sequence grows by the factor (𝐼 − 𝑃𝑘+1).

𝑘+1∏
𝑖=1
(𝐼 − 𝑃𝑖) = (𝐼 − 𝑃𝑘+1)

𝑘∏
𝑖=1
(𝐼 − 𝑃𝑖)

𝐼 −
𝑘+1∑︁
𝑖=1

(
𝑘+1∏
𝑗=𝑖+1
(𝐼 − 𝑃 𝑗 )

)
𝑃𝑖 = 𝐼 − 𝑃𝑘+1 − (𝐼 − 𝑃𝑘+1)

𝑘∑︁
𝑖=1

(
𝑘∏

𝑗=𝑖+1
(𝐼 − 𝑃 𝑗 )

)
𝑃𝑖

= (𝐼 − 𝑃𝑘+1)
(
𝐼 −

(
𝑘∑︁
𝑖=1

(
𝑘∏

𝑗=𝑖+1
(𝐼 − 𝑃 𝑗 )

)
𝑃𝑖

))
Due to the equivalence of the two sequences, we can simplify the expression for the state of

the model 𝐴𝜃,𝑘

𝐴𝜃,𝑘 =

(
𝑘∏
𝑖=1
(𝐼 − 𝑃𝑘)

)
(𝐴0 −𝐴∗) +𝐴∗

□

Acrossmultiple training episodes, let’s analyze the interactions between consecutive episodes,

given their projections 𝑃1 and 𝑃2 respectively. Ideally, the model would not experience catas-

trophic forgetting, however, we previously explained that in the case of training each episode
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with weight decay until convergence, the model would forget everything that isnt involved with

the most recent task, here 𝑃2.

Due to the inherent forgetting of training to convergence with weight decay, the rest of our

discussion in this section will focus on the unregularized setting where 𝜆 = 0. Let’s now measure

the forgetting in the unregularized case.

Proposition 3.5. In general, when training each episode to convergence without the use of weight

decay, the single-layer model will experience forgetting unless all pairs of tasks commute, that is

𝑃𝑖𝑃 𝑗 = 𝑃 𝑗𝑃𝑖 for any 𝑖, 𝑗 .

Proof. By induction, let’s start by analyzing the forgetting of the first two tasks. Let 𝑃2 be the

projection for the most recent episode of training, and 𝑃1 is the projection of the previous episode.

If both episodes were trained to convergence then the current state of the model is

𝐴𝜃 = 𝑃2𝐴∗ + (𝐼 − 𝑃2) (𝑃1𝐴∗ + (𝐼 − 𝑃1)𝐴0

As needed to evaluate the forgetting exhibited for task 𝑃1, the original loss of the first task

was

𝐶1 =
1
2
| |𝑃1((𝑃1𝐴∗ − (𝐼 − 𝑃1)𝐴0) −𝐴∗) | |2 = 0

The forgetting of the first task is measured as follows.

F (𝑃1,𝐶1, 𝜃 ) =
1
2
| |𝑃1(𝐴𝜃 −𝐴∗) | |2 −𝐶1

=
1
2
| |𝑃1((𝑃2𝐴∗ + (𝐼 − 𝑃2) (𝑃1𝐴∗ + (𝐼 − 𝑃1)𝐴0) −𝐴∗) | |2

=
1
2
| | (𝑃1𝑃2 − 𝑃1𝑃2𝑃1) (𝐴∗ −𝐴0) | |2

In general, for the forgetting to be zero for any 𝐴0 after the second episode, then it must be that

𝑃1𝑃2 = 𝑃1𝑃2𝑃1. For this to be true, two projection matrices must commute. See the Appendix for

12



further discussion on when projection matrices commute.

Similarly, we can measure the forgetting for any task after 𝑘 episodes. Let’s use Proposition

3.4 as the current state of the model after 𝑘 episodes.

𝐴𝜃,𝑘 =

(
𝑘∏
𝑖=1
(𝐼 − 𝑃𝑘)

)
(𝐴0 −𝐴∗) +𝐴∗

Now lets measure the forgetting for some task 𝑃𝑛 for 𝑛 < 𝑘 .

F (𝑃𝑛, 0, 𝜃 ) =
1
2
| |𝑃𝑛 (𝐴𝜃,𝑘 −𝐴∗) | |2

For the forgetting to be zero for any 𝐴0, we need

𝑃𝑛

((
𝑘∏
𝑖=1
(𝐼 − 𝑃𝑘)

)
(𝐴0 −𝐴∗) +𝐴∗

)
− 𝑃𝑛𝐴∗ = 0

𝑃𝑛

𝑘∏
𝑖=1
(𝐼 − 𝑃𝑘) = 0

If all pairs of tasks commute then we can simplify the expression by shifting 𝑃𝑖 to the left enough.

By shifting along the product operator, we eventually find that 𝑃𝑛 will be multiplied by (𝐼 − 𝑃𝑛)

which will produce the intended result of zero. □

In general, it is unreasonable to assume all pairs of tasks commute, that means that the single-

layer model will experience forgetting. Nevertheless, we can we can still prove convergence

towards 𝐴∗ even if it will experience forgetting on its path.

Similarly to the proof for Proposition 3.1, let’s prove that the point of convergence in each

episode gets closer to the true function 𝐴∗.

Proposition 3.6. The state of the model after each episode can not grow further from the true

function 𝐴∗

13



Proof.

| |𝐴𝜃,𝑘 −𝐴∗ | |2 = | |
(

𝑘∏
𝑖=1
(𝐼 − 𝑃𝑘)

)
(𝐴0 −𝐴∗) +𝐴∗ −𝐴∗ | |2

= | |
(

𝑘∏
𝑖=1
(𝐼 − 𝑃𝑘)

)
(𝐴0 −𝐴∗) | |2

≤ ||
(
𝑘−1∏
𝑖=1
(𝐼 − 𝑃𝑘)

)
(𝐴0 −𝐴∗) | |2

Given the norm reducing property of projections, we find thatwith every new episode the squared

distance between the model and the true function is bounded by the distance at the previous

episode.

| |𝐴𝜃,𝑘+1 −𝐴∗ | |2 ≤ ||𝐴𝜃,𝑘 −𝐴∗ | |2

□

Although the result from Proposition 3.6 is promising, it still doesn’t prove convergence. In

general, it may be possible that each task is identical, in which case we see that we won’t neces-

sarily converge to the true function after an infinite number of projections.

Nevertheless, we can talk about the probability of converging given random projections.

Proposition 3.7. If each projection 𝑃𝑖 is sampled uniformly from a set of rank-1 orthogonal tasks,

then the probability P(𝐴𝜃,𝑘 = 𝐴∗) of the model matching the true function is

𝑑∑︁
𝑖=1
(−1)𝑑+1

(
𝑑

𝑖

) (
1 − 𝑖

𝑑

)𝑘
Proof. As a reminder, our problemmapsR𝑑 → R𝑑 . Since the set of tasks is orthogonal and rank-1,

there are 𝑑 tasks in the set to span the entire space.

From Proposition 3.5 we know that if the tasks are orthogonal then there will be no forgetting.

Thus, to match the true function, we only need to run at least one episode for each tasks in the

14



set.

Given 𝑘 independent uniform draws of the set of 𝑑 tasks, let𝐶𝑖 denote the event that task 𝑖 is

selected within the 𝑘 draws.

P(𝐶𝑖) =
(
𝑑 − 1
𝑑

)𝑘
Using the inclusion-exclusion principle which states

𝑑⋃
𝑖=1

𝐶𝑖 =

𝑑∑︁
𝑖=1

𝐶𝑖 −
𝑑∑︁
𝑖< 𝑗

(𝐶𝑖 ∩𝐶 𝑗 ) +
𝑑∑︁

𝑖< 𝑗<𝑘

(𝐶𝑖 ∩𝐶 𝑗 ∩𝐶𝑘) + · · · + (−1)𝑑+1
𝑑⋂
𝑖=1

𝐶𝑖

For some set of𝑛 excluded tasks 𝑆 , where |𝑆 | = 𝑛, the probability that all of them are unselected

is

P(
⋂
𝑖∉𝑆

𝐶𝑖) =
(
1 − 𝑛

𝑑

)𝑘
Thus by the inclusion-exclusion principle, we find that the probability of all tasks being

trained at least once to be

P

(
𝑑⋂
𝑖=1

𝐶𝑖

)
=

𝑑∑︁
𝑖=1
(−1)𝑑+1

(
𝑑

𝑖

) (
1 − 𝑖

𝑑

)𝑘
where

(𝑑
𝑖

)
denotes the combinatorial operation 𝑑 choose 𝑖 . □

To be more realistic, we can consider the more general problem of sampling our tasks from

the set of rank-1 tasks.

Proposition 3.8. If each projection 𝑃𝑖 is sampled uniformly from a set of rank-1 tasks, then the

expected distance between 𝐴𝜃,𝑘 and 𝐴∗ is bounded by

E| |𝐴𝜃,𝑘 −𝐴∗ | | ≤ 𝑑−
𝑘
2 (𝐴0 −𝐴∗)

Proof. To bound the probability of 𝐴𝜃,𝑘 matching 𝐴∗, we use the fact that, for some rank-1 task,
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(𝐼 − 𝑃𝑖) is a projection onto the hyperplane normal to the image of 𝑃𝑖 , which is a line.

From Proposition 3.4 we have the state of the model.

𝐴𝜃,𝑘 =

(
𝑘∏
𝑖=1
(𝐼 − 𝑃𝑘)

)
(𝐴0 −𝐴∗) +𝐴∗

The model will only match the true function when
∏𝑘

𝑖=1(𝐼 −𝑃𝑘) = 0. Nevertheless, we can bound

this product using the principal angles between the hyperplanes.

Note, a rank-1 projection can be written as the outerproduct of a unit vector 𝑃 = 𝑣𝑣𝑇 . In this

case, | | (𝐼 −𝑃2) (𝐼 −𝑃1)𝑋 | | ≤ | cos(𝜃 ) | · | | (𝐼 −𝑃1)𝐴| | where 𝜃 is the principal angle between the two

tasks. Because the projections are rank-1, cos(𝜃 ) = 𝑣𝑇2 𝑣1.

By sampling the projections uniformly and independently, we can produce the following

bound.

| |𝐴𝜃,𝑘 −𝐴∗ | | ≤ |𝑣𝑇2 𝑣1 |𝑘 (𝐴0 −𝐴∗)

By rotational symmetry, the distribution of their inner-product of two uniformly random unit

vectors 𝑣1 and 𝑣2 is the same as if we were to fix one of them. Let 𝑣1 = 𝑒1, the inner-product 𝑣𝑇2 𝑣1

can be written by the following sum.

𝑣𝑇2 𝑣1 = 𝑣𝑇2 𝑒1

𝑑∑︁
𝑖=1

𝑣2,𝑖1𝑖=1 = 𝑣2,1

By rotational symmetry, E[𝑣2,1] = 0. To solve for the variance, note that 𝑣2 is a unit vector, so∑𝑑
𝑖=1 𝑣

2
2,𝑖 = 1. Since 𝑣2 is drawn uniformly, it is has coordinate symmetry, thus Var[𝑣2,1] = 1

𝑑
.

By the definition of the standard deviation, and since the mean of 𝑣𝑇2 𝑣1 is zero, we find that

|𝑣𝑇2 𝑣1 | is of the order of
1√
𝑑
, which leads to the simplification

E| |𝐴𝜃,𝑘 −𝐴∗ | | ≤ 𝑑−
𝑘
2 (𝐴0 −𝐴∗)
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□

3.3 Role of weight decay

So far we have only considered training each episode to convergence, which makes weight decay

undesirable. However, in practice we are training each episode for finite time. From Equation 3.1,

the two decaying terms in the single episode dynamics are decaying at very different rates. The

convergence towards the target 𝑃𝐴∗ occurs in 𝑒−𝑡 + O(𝜆𝑡) whereas the convergence caused by

weight decay along the kernel of the task occurs in 𝑒−𝜆𝑡 . Due to the difference in scales, for finite

time training there exists a 𝜆 small enough such that the regularized dynamics are approximately

unregularized.

Proposition 3.9. If the model is trained on each episode for at most time 𝑇 , then the dynamics of

𝐴𝜃 are approximately unregularized for 𝜆 ≪ 1
𝑇

Proof. The Taylor series expansion of 𝐴𝜃,𝑇 recovers the unregularized dynamics to within the

order of O(𝜆𝑇 )

𝐴𝜃,𝑇 = 𝑃
𝐴∗

1 + 2𝜆 + 𝑃
(
𝐴0 −

𝐴∗
1 + 2𝜆

)
𝑒−(1+2𝜆)𝑇 + (𝐼 − 𝑃)𝐴0𝑒

−2𝜆𝑇

= 𝑃𝐴∗ + 𝑃 (𝐴0 −𝐴∗)𝑒−𝑇 + (𝐼 − 𝑃)𝐴0 − 2𝜆𝑇 (𝑃 (𝐴0 −𝐴∗)𝑒−𝑇 + (𝐼 − 𝑃)𝐴0)

= 𝑃𝐴∗ + (1 − 2𝜆𝑇 ) (𝑃 (𝐴0 −𝐴∗)𝑒−𝑇 + (𝐼 − 𝑃)𝐴0)

In practice we have 𝜆 > 0 small and 𝑇 ≫ 1 large. Nevertheless, for 2𝜆𝑇 ≪ 1, the dynamics are

approximated unregularized. □

Although it’s good news that small regularization wont significantly affect performance, if

the goal is to be approximately unregularized the question becomes why use weight decay at all.
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The reason it has not seemed fitting to use weight decay has been the assumption that 𝐴∗ is

full rank. If 𝐴∗ is full rank then there exists a unique solution 𝐴𝜃 = 𝐴∗ for the problem. However,

if the true function was rank deficient, we can think in terms of 𝐴∗ being some projected matrix

of a super target function 𝐴∗∗, where 𝐴∗ = 𝑃∗𝐴∗∗. In this way it becomes clear from our previous

analysis that there are an infinite number of solutions to the problem along the kernel of 𝑃∗. Thus,

to assume a unique solution to the continual learning problem, we can use small weight decay.

Proposition 3.10. With weight decay, the weights of the model along the kernel of the true function

will decay exponentially to zero across each episode, unaffected by the choice of task.

Proof. Let 𝑃𝑖 be the projection for the current task, and the true function will be written as 𝑃∗𝐴∗∗.

We can separate the model 𝐴𝜃 in terms of its projection in 𝑃∗ and its projection in (𝐼 − 𝑃∗).

𝐴𝜃,𝑡 = 𝑃
𝑃∗𝐴∗∗
1 + 2𝜆 + 𝑃

(
𝐴0 −

𝑃∗𝐴∗∗
1 + 2𝜆

)
𝑒−(1+2𝜆)𝑡 + (𝐼 − 𝑃)𝐴0𝑒

−2𝜆𝑡

= 𝑃𝑃∗
𝐴∗∗

1 + 2𝜆 + 𝑃𝑃∗
(
𝐴0 −

𝐴∗∗
1 + 2𝜆

)
𝑒−(1+2𝜆)𝑡 + 𝑃 (𝐼 − 𝑃∗)𝐴0𝑒

−(1+2𝜆)𝑡 + (𝐼 − 𝑃)𝐴0𝑒
−2𝜆𝑡

= 𝑃𝑃∗
𝐴∗∗

1 + 2𝜆 + 𝑃𝑃∗
(
𝐴0 −

𝐴∗∗
1 + 2𝜆

)
𝑒−(1+2𝜆)𝑡 +

(
𝑒−𝑡𝑃 + (𝐼 − 𝑃)

)
(𝐼 − 𝑃∗)𝐴0𝑒

−2𝜆𝑡 + (𝐼 − 𝑃)𝑃∗𝐴0𝑒
−2𝜆𝑡

= 𝑃∗
𝐴∗∗

1 + 2𝜆 + 𝑃𝑃∗
(
𝐴0 −

𝐴∗∗
1 + 2𝜆

)
𝑒−(1+2𝜆)𝑡 + (𝐼 − 𝑃∗)𝐴0𝑒

−2𝜆𝑡 − (1 − 𝑒−𝑡 )𝑃 (𝐼 − 𝑃∗)𝐴0𝑒
−2𝜆𝑡 + (𝐼 − 𝑃)𝑃∗𝐴0𝑒

−2𝜆𝑡

By isolating the term that only depends on the kernel of 𝑃∗, we see that it decays indepen-

dently of the choice of task. By contrast, the weights along the kernel of 𝑃∗ will only decay in the

unregularized case if the range of 𝑃 is included in the range of 𝑃∗. □

In practice, we are interested in the case where the rank of each task is small compared to the

rank of the true function. In that case, it is reasonable to assume that many tasks could be
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4 | Deep Diagonal Case

In the previous chapter we explored the single-layer linear network in a continual learning prob-

lem. We found many positive results such as convergence to the true function, as well as the role,

albeit mild, of weight decay. Now we will explore the deep case where 𝐿 > 1, and find that the

dynamics become nonlinear with respect to the parameters 𝜃 of the model.

As a reminder, the deep model can be written as

𝐴𝜃 =

𝐿∏
ℓ=1

𝑊ℓ

where
∏

denotes the recursive right-multiply operator. Note that the variable ℓ is reserved for

designating a particular layer ℓ of the model.

First and foremost, all of our analysis in the deep case will rely on the standard balanced-

ness assumption used in much of the literature on deep linear networks. We state and prove it

generally in the following theorem.

Theorem 4.1 (Balancedness). With weight decay, deep linear networks converge exponentially to

being balanced, i.e.

𝑊ℓ+1𝑊
𝑇
ℓ+1 =𝑊 𝑇

ℓ 𝑊ℓ

Proof. To simplify notation, if a layer subscript finishes with an unresolved + or − sign then it
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denotes the following product. 
𝑊ℓ− =

ℓ−1∏
𝑖=1

𝑊𝑖,

𝑊ℓ+ =
𝐿∏

𝑖=ℓ+1
𝑊𝑖 .

Thus 𝐴𝜃 can be written as𝑊ℓ−𝑊ℓ𝑊ℓ+ for any ℓ .

Since theweights are trainedwith gradient descent, we find that the dynamics to be as follows.

𝑑𝑊ℓ

𝑑𝑡
= −∇𝑊ℓ

𝐶 (𝑃, 𝜃, 𝜆)

= −∇𝑊ℓ

1
2
| |𝑃 (𝑊ℓ−𝑊ℓ𝑊ℓ+ −𝐴∗) | |2 + 𝜆

𝐿∑︁
𝑖=1
| |𝑊𝑖 | |2

=𝑊 𝑇
ℓ−𝑃 (𝐴∗ −𝐴𝜃 )𝑊 𝑇

ℓ+ − 2𝜆𝑊ℓ

Now we can solve for the evolution of the balancedness of the model.

𝑑

𝑑𝑡

(
𝑊ℓ+1𝑊

𝑇
ℓ+1 −𝑊 𝑇

ℓ 𝑊ℓ

)
=
𝑑𝑊ℓ+1
𝑑𝑡

𝑊 𝑇
ℓ+1 +𝑊ℓ+1

𝑑𝑊 𝑇
ℓ+1

𝑑𝑡
−
𝑑𝑊 𝑇

ℓ

𝑑𝑡
𝑊ℓ −𝑊 𝑇

ℓ

𝑑𝑊ℓ

𝑑𝑡

=𝑊 𝑇
ℓ+1−𝑃 (𝐴𝜃 −𝐴∗)𝑊 𝑇

ℓ+1+𝑊
𝑇
ℓ+1 +𝑊ℓ+1𝑊ℓ+1+(𝐴𝑇

𝜃
−𝐴𝑇

∗ )𝑃𝑊ℓ+1−

−𝑊ℓ+(𝐴𝑇
𝜃
−𝐴𝑇

∗ )𝑃𝑊ℓ−𝑊ℓ −𝑊 𝑇
ℓ 𝑊

𝑇
ℓ+𝑃 (𝐴𝜃 −𝐴∗)𝑊 𝑇

ℓ−

− 4𝜆𝑊ℓ+1𝑊
𝑇
ℓ+1 + 4𝜆𝑊 𝑇

ℓ 𝑊ℓ

=𝑊 𝑇
ℓ+1−𝑃 (𝐴𝜃 −𝐴∗)𝑊 𝑇

ℓ+ +𝑊ℓ+(𝐴𝑇
𝜃
−𝐴𝑇

∗ )𝑃𝑊ℓ+1−

−𝑊ℓ+(𝐴𝑇
𝜃
−𝐴𝑇

∗ )𝑃𝑊ℓ+1− −𝑊 𝑇
ℓ+1+𝑃 (𝐴𝜃 −𝐴∗)𝑊 𝑇

ℓ−

− 4𝜆
(
𝑊ℓ+1𝑊

𝑇
ℓ+1 −𝑊 𝑇

ℓ 𝑊ℓ

)
= −4𝜆

(
𝑊ℓ+1𝑊

𝑇
ℓ+1 −𝑊 𝑇

ℓ 𝑊ℓ

)
(
𝑊ℓ+1𝑊

𝑇
ℓ+1 −𝑊 𝑇

ℓ 𝑊ℓ

)
(𝑡) =

(
𝑊ℓ+1𝑊

𝑇
ℓ+1 −𝑊 𝑇

ℓ 𝑊ℓ

)
(0) 𝑒−4𝜆
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□

Theorem 4.1 highlights the very important role of weight decay that is new in the deep case.

For chapters 4 and 5, this property will be systematically assumed to be true. Previously, we in-

troduced the importance of upper bounding 𝜆 by the inverse of the length 𝑇 of a given episode,

𝜆 ≪ 1
𝑇
. Here, note that the convergence to balancedness occurs independently from each episode,

so there will be a lower bound on 𝜆 as a function of the total training time 𝑘𝑇 , to ensure approx-

imate balancedness. Alternatively, consider the case where the model is initialized as balanced,

then even without regularization, it will remain balanced throughout training.

4.1 Alignment eqivalence

In this chapter, we will begin by focusing on a reduction of the deep case that occurs when the

model aligns itself with a given episode’s local true function 𝑃𝐴∗.

Theorem 4.2 (Diagonal Reduction). If the model 𝐴𝜃 is balanced and can be decomposed into

𝑈∗𝐷𝜃𝑉
𝑇
∗ for some diagonal matrix𝐷𝜃 , where𝑈∗ and𝑉∗ are the left and right singular vector matrices

of 𝑃𝐴∗, then the problem in this given episode can be reduced to the diagonal problem

min
𝜃

1
2
| |𝐷𝜃,𝑟 − Σ∗ | |2 + 𝜆𝐿

𝑑∑︁
𝑖=1

𝐷
2
𝐿

𝜃,𝑖𝑖

where Σ∗ is the singular value matrix of 𝑃𝐴∗ and 𝐷𝜃,𝑟 denotes the truncated 𝐷𝜃 where all diagonal

elements 𝐷𝜃 , 𝑖𝑖 ← 0 are set to zero for all indices 𝑖 > 𝑟 where 𝑟 = Rank(𝑃).

Proof. Let’s start by developing the original minimization problem.

min
𝜃

1
2
| |𝑃 (𝐴𝜃 −𝐴∗) | |2 + 𝜆

𝐿∑︁
ℓ=1
| |𝑊ℓ | |2

= min
𝜃

1
2
| |𝑃𝑈∗𝐷𝜃𝑉

𝑇
∗ −𝑈∗Σ∗𝑉𝑇

∗ ) | |2 + 𝜆
𝐿∑︁
ℓ=1
| |𝑊ℓ | |2
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To start, considering that𝑈∗Σ∗𝑉𝑇
∗ is the singular value decomposition of 𝑃𝐴∗, and the projection

𝑃 is idempotent, we have that 𝑃𝑈∗Σ∗𝑉𝑇
∗ = 𝑈∗Σ∗𝑉𝑇

∗ . Since 𝑃 is rank deficient, we know that Σ∗

has some zero singular values. Let 𝑟 denote the rank of 𝑃𝐴∗, we can the singular vector matrices

as a concatenation between the eigenvectors associated to non-zero singular values, and those

associated to singular values of zero. Let’s denote 𝑈∗ = [𝑈∗,≤𝑟 |𝑈∗,>𝑟 ] and 𝑉∗ = [𝑉∗,≤𝑟 |𝑉∗,>𝑟 ] as the

separation.

For𝑈∗Σ∗𝑉𝑇
∗ to be unchanged by the projection 𝑃 , we have that 𝑃𝑈∗,≤𝑟 = 𝑈∗,≤𝑟 , thus𝑈∗,≤𝑟 is in

the image of 𝑃 . With the added assumption that 𝐴∗ is full rank, we get that 𝑟 is the rank of 𝑃 and

𝑈∗,>𝑟 is in the kernel of 𝑃 .

Thus 𝑃𝐴𝜃 = 𝑈∗𝐷𝜃,𝑟𝑉
𝑇
∗ , where all diagonal elements of 𝐷𝜃,𝑟,𝑖𝑖 = 1𝑖≤𝑟𝐷𝜃,𝑖𝑖 are either unchanged

or masked.

Now we can factor out the eigenvectors from the minimization problem using the property

that the Frobenius norm square can be written as | |𝑋 | |2 = Tr(𝑋𝑇𝑋 ) and the two following prop-

erties of trace operators, Tr(𝐴𝐵𝐶) = Tr(𝐶𝐴𝐵) and Tr(𝐴 + 𝐵) = Tr(𝐴) + Tr(𝐵). Let’s start by

focusing on the first term of the minimization problem.

1
2
| |𝑃𝑈∗𝐷𝜃𝑉

𝑇
∗ −𝑈∗Σ∗𝑉𝑇

∗ ) | |2

=
1
2
| |𝑈∗𝐷𝜃,𝑟𝑉

𝑇
∗ −𝑈∗Σ∗𝑉𝑇

∗ ) | |2

=
1
2
Tr

(
(𝑉∗𝐷𝑇

𝜃,𝑟
𝑈𝑇
∗ −𝑉∗Σ𝑇∗𝑈𝑇

∗ ) (𝑈∗𝐷𝜃,𝑟𝑉
𝑇
∗ −𝑈∗Σ∗𝑉𝑇

∗ )
)

=
1
2

(
Tr(𝐷𝑇

𝜃,𝑟
𝐷𝜃,𝑟 ) − Tr(Σ𝑇∗𝐷𝜃,𝑟 ) − Tr(𝐷𝑇

𝜃,𝑟
Σ∗) + Tr(Σ𝑇∗Σ∗)

)
=
1
2
| |𝐷𝜃,𝑟 − Σ∗ | |2

Note that for any singular value decomposition, we get that | |𝑈 Σ𝑉𝑇 | |2 = Tr(Σ𝑇Σ) = ∑𝑑
𝑖=1 𝜎

2
𝑖 .

For the second term, we will rely on the this property of the Frobenius norm and solve for the

singular values at each layer using the balancedness condition of 𝐴𝜃 . Let 𝐴𝜃 = 𝑈𝜃Σ𝜃𝑉
𝑇
𝜃

be a
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singular value decomposition of 𝐴𝜃 .

𝐴𝜃𝐴
𝑇
𝜃
=𝑊1𝑊2 · · ·𝑊𝐿𝑊

𝑇
𝐿 · · ·𝑊

𝑇
2 𝑊

𝑇
1

𝑈𝜃Σ
2
𝜃
𝑈𝜃 = (𝑊1𝑊

𝑇
1 )𝐿

𝑈𝜃Σ
2
𝜃
𝑈𝜃 = 𝑈1Σ

2𝐿
1 𝑈

𝑇
1

By equivalence, we find that each singular value of the first layer 𝜎𝐿
1,𝑖 = 𝜎𝜃,𝑖 .

Due to balancedness, we also have that all layers have the same singular values

𝑊ℓ+1𝑊
𝑇
ℓ+1 =𝑊 𝑇

ℓ 𝑊ℓ

𝑈ℓ+1Σ
2
ℓ+1𝑈

𝑇
ℓ+1 = 𝑉ℓΣ

2
ℓ𝑉

𝑇
ℓ

Σℓ+1 = Σℓ

Now to evaluate the second term of the minimization problem, we need to prove that the

singular values of 𝐴𝜃 are the absolute values of the diagonal 𝐷𝜃 . The proof relies on the fact that

an unordered singular value decomposition (i.e. one in which the diagonal of the singular value

matrix is unordered), consists of any decomposition of a matrix into a product 𝐴𝐵𝐶 , where 𝐴

and 𝐶 are orthogonal and 𝐵 is diagonal and positive. The current decomposition of 𝐴𝜃 almost

satisfies the criteria for being a singular value decomposition except its values may be negative.

To fix that, we can pass on the negative sign of any negative elements in 𝐷𝜃 to the corresponding

vector in 𝑉∗. Since 𝑉∗ is orthogonal, then changing the sign of any of its columns ensures it is

still orthogonal. With this transformation, we have transformed 𝐷𝜃 to be non-negative diagonal

matrix, which is left and right multiplied by orthogonal matrices to produce𝐴𝜃 . Thus it is a valid

singular value decomposition.
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𝜆

𝐿∑︁
ℓ=1
| |𝑊ℓ | |2 = 𝜆

𝐿∑︁
ℓ=1

𝑑∑︁
𝑖=1

𝜎2
ℓ,𝑖

= 𝜆𝐿

𝑑∑︁
𝑖=1

𝜎
2
𝐿

𝜃,𝑖

= 𝜆𝐿

𝑑∑︁
𝑖=1

𝐷
2
𝐿

𝜃,𝑖𝑖

Putting both terms together, we recover the reduced minimization problem, which is fully

diagonalized. □

With the reduction to a diagonal problem, this chapter will be focused on the diagonal deep

case. That is, where 𝑃 , 𝐴∗ and every layer𝑊ℓ is a diagonal matrix and 𝐴∗ is even positive semi-

definite.

4.2 Single episode dynamics

The reduction from the general case to the diagonal case turns the matrix problem into a scalar

problem.

Lemma 4.3. The diagonalized and balanced formulation can be expressed as a scalar minimization

problem.

min
𝜃

1
2

𝑑∑︁
𝑖=1

𝑃𝑖

(
𝑊 𝐿

𝑖 −𝐴∗,𝑖
)2
+ 𝜆𝐿

𝑑∑︁
𝑖=1

𝑊 2
𝑖

Proof. Thematrix product of two diagonal matrices is the same as the element-wise product. This

enables us to solve for each element of the problem.

(𝑃 (𝐴𝜃 −𝐴∗))𝑖 = 𝑃𝑖

(
𝐿∏
ℓ=1

𝑊ℓ,𝑖 −𝐴∗,𝑖

)
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We also have that the Frobnius norm squared is just the sum of squared elements.

1
2
| |𝑃 (𝐴𝜃 −𝐴∗) | |2 + 𝜆

𝐿∑︁
ℓ=1
| |𝑊ℓ | |2 =

1
2

𝑑∑︁
𝑖=1

𝑃𝑖

(
𝐿∏
ℓ=1

𝑊ℓ,𝑖 −𝐴∗,𝑖

)2
+ 𝜆

𝐿∑︁
ℓ=1

𝑑∑︁
𝑖=1

𝑊 2
ℓ,𝑖

Lastly, from the balancedness assumption we have that𝑊𝑖 =𝑊𝑗 for all 𝑖, 𝑗 , which leads to the

following simplification.
1
2

𝑑∑︁
𝑖=1

𝑃𝑖

(
𝑊 𝐿

𝑖 −𝐴∗,𝑖
)2
+ 𝜆𝐿

𝑑∑︁
𝑖=1

𝑊 2
𝑖

□

Let’s start by solving for the dynamics of the model using gradient descent.

Proposition 4.4. The dynamics of each diagonal element 𝐴𝜃,𝑖 solve the scalar ordinary differential

equation
𝑑𝐴𝜃,𝑖

𝑑𝑡
= 𝐿𝑃𝑖 (𝐴∗,𝑖 −𝐴𝜃,𝑖)𝐴

2− 1
𝐿

𝜃,𝑖
− 2𝜆𝐿𝐴𝜃,𝑖

Proof. From Lemma 4.3 we have that the cost is

𝐶 (𝑃, 𝜃, 𝜆) = 1
2

𝑑∑︁
𝑖=1

𝑃𝑖

(
𝑊 𝐿

𝑖 −𝐴∗,𝑖
)2
+ 𝜆𝐿

𝑑∑︁
𝑖=1

𝑊 2
𝑖

Although it’s tempting to solve for the dynamics of𝑊𝑖 , we are not able to simply take the

gradient of the cost with respect to𝑊𝑖 because we need to take the gradient with respect to each

parameter𝑊ℓ,𝑖 .

𝑑𝑊ℓ,𝑖

𝑑𝑡
= −∇𝑊ℓ,𝑖

𝐶 (𝑃, 𝜃, 𝜆)

= −∇𝑊ℓ,𝑖

(
1
2

𝑑∑︁
𝑖=1

𝑃𝑖

(
𝑊 𝐿−1

𝑖 𝑊ℓ,𝑖 −𝐴∗,𝑖
)2
+ 𝜆

𝐿∑︁
ℓ=1

𝑑∑︁
𝑖=1

𝑊 2
ℓ,𝑖

)
= 𝑃𝑖 (𝐴∗,𝑖 −𝑊 𝐿

𝑖 )𝑊 𝐿−1
ℓ,𝑖 − 2𝜆𝑊𝑖
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From there we find the dynamics of the model.

𝑑𝐴𝜃,𝑖

𝑑𝑡
=

𝐿∑︁
ℓ=1

𝑊ℓ−,𝑖
𝑑𝑊ℓ,𝑖

𝑑𝑡
𝑊ℓ+,𝑖

=𝑊 𝐿−1
𝑖

𝐿∑︁
ℓ=1

(
𝑃𝑖 (𝐴∗,𝑖 −𝑊 𝐿

𝑖 )𝑊 𝐿−1
ℓ,𝑖 − 2𝜆𝑊𝑖

)
= 𝐿𝑃𝑖 (𝐴∗,𝑖 −𝐴𝜃,𝑖)𝐴

2− 1
𝐿

𝜃,𝑖
− 2𝜆𝐿𝐴𝜃,𝑖

□

4.3 Fixed point analysis

From Proposition 4.4, the dynamics of the model are characterized by a first degree homogeneous

nonlinear ODE. The ODE doesn’t have an explicit solutionmainly due to the factor𝐴
2(𝐿−1)

𝐿

𝜃,𝑖
making

it a non-polynomial ODE. Nevertheless, we can study its general behavior using a fixed point

analysis.

Corollary 4.5. As a diagonal projection matrix, 𝑃𝑖 ∈ {0, 1}

Proof. 𝑃 is an orthogonal projection matrix, thus it must be idempotent and symmetric. As a di-

agonal matrix, we get that it is symmetric. However for it to be idempotent, its diagonal elements

must satisfy 𝑃2
𝑖 = 𝑃𝑖 thus, 𝑃𝑖 ∈ {0, 1}. □

Since 𝑃𝑖 is either 1 or 0, we recognize the idea fromProposition 3.2 that for 𝑃𝑖 = 0, the dynamics

are simply decaying to zero.

Proposition 4.6. If 𝑃𝑖 = 1, then the element𝐴𝜃,𝑖 exhibits three fixed points, two of which are named
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ℎ and 𝐴𝜆∗ respectively for clarity and convenience.

𝐴𝜃,𝑖 =



0,

ℎ =

(
2𝜆
𝐴∗,𝑖

) 𝐿
𝐿−2

,

𝐴𝜆∗ = 𝐴∗,𝑖 − 2𝜆𝐴
𝐿

𝐿−2
∗,𝑖 .

Proof. Since the ODE is homogeneous, we can factor out𝐴𝜃,𝑖 , trivially proving that zero is a fixed

point. The other two fixed points come from the solutions of the remaining equation.

(𝐴∗,𝑖 −𝐴𝜃,𝑖)𝐴
𝐿−2
𝐿

𝜃,𝑖
= 2𝜆

Since 𝜆 is small, we know that the solutions are 0 + O(𝜆) and 𝐴∗,𝑖 + O(𝜆). For more accuracy, we

can approximate the fixed points by solving for a linear perturbation around those two points.

First near 0, let 𝐴𝜃,𝑖 = 𝜖

(𝐴∗,𝑖 − 𝜖)𝜖
𝐿−2
𝐿 ≈ 𝐴∗,𝑖𝜖

𝐿−2
𝐿 = 2𝜆

⇒𝜖 ≈
(
2𝜆
𝐴∗,𝑖

) 𝐿
𝐿−2

Similarly near 𝐴∗,𝑖 , let 𝐴𝜃,𝑖 = 𝐴∗,𝑖 + 𝜖

(𝐴∗,𝑖 −𝐴∗,𝑖 − 𝜖) (𝐴∗,𝑖 + 𝜖)
𝐿−2
𝐿 ≈ −𝜖𝐴

𝐿−2
𝐿

∗,𝑖 = 2𝜆

⇒𝜖 ≈ −2𝜆𝐴
𝐿

𝐿−2
∗,𝑖

□

Proposition 4.6 proves the existence of the three fixed points, now we can study the stability

at each point.
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Proposition 4.7. The fixed points 0 and 𝐴𝜆∗ are stable, and the fixed point ℎ is unstable.

Proof. To find the stability of each point, we must solve for the sign of ∇𝑑𝐴𝜃,𝑖

𝑑𝑡
at each fixed point.

∇
𝑑𝐴𝜃,𝑖

𝑑𝑡
= (2 − 3𝐿)𝐴1− 2

𝐿

𝜃,𝑖
+ (2𝐿 − 2)𝐴∗,𝑖𝐴

1− 2
𝐿

𝜃,𝑖
− 2𝜆𝐿

At the origin, the gradient is negative, thus the origin is stable.

Althoughwe don’t have the exact form ofℎ and𝐴𝜆∗, we can indirectly solve for their stabilities

using the intermediate value theorem.

We have that
𝑑𝐴𝜃,𝑖

𝑑𝑡

��
𝐴∗,𝑖
2

=

(
1
2

(
𝐴∗,𝑖
2

)2+ 2
𝐿

− 2𝜆
)
𝐿𝐴∗,𝑖 > 0

We also have that
𝑑𝐴𝜃,𝑖

𝑑𝑡

��
2𝐴∗,𝑖

= −𝐿𝐴∗,𝑖
(
2𝐴∗,𝑖

)2+ 2
𝐿 − 2𝜆𝐿𝐴∗,𝑖 < 0

By the intermediate value theorem, since ℎ is the only fixed point between the origin and 𝐴∗,𝑖
2 ,

it’s gradient must be positive, thus it is unstable. In the same way, since 𝑑𝐴𝜃,𝑖

𝑑𝑡
goes to −∞ and the

only fixed point greater than ℎ is 𝐴𝜆∗ then it must be stable. □

Proposition 4.7 implies that for 𝐴𝜃,𝑖 initialized outside of the interval [0, 𝐴𝜆∗] it will converge

to the their nearest fixed points (either 0 or 𝐴𝜆∗), for an initialization in the interval [0, ℎ), it will

converge to 0 and for an initialization in the interval (ℎ,𝐴𝜆∗ it will converge to 𝐴𝜆∗.

This is bad news because any initialization of the opposite sign of 𝐴∗ will go to zero. In the

next chapter, we will show that the freedom to rotate largely mitigates this catastrophic behavior.

Nonetheless, there is more bad news for points inside the interval [0, ℎ). Due to the decaying

nature of the model when 𝑃𝑖 = 0, then training on a task for too long might lead to a phenomena

we will call catastrophic weight loss. Unlike catastrophic forgetting, catastrophic weight loss is

irreversible using gradient descent. For this reason, we will refer to fixed point ℎ as the event

horizon. All weights that decay past the event horizon are unrecoverable.
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4.4 Consecutive episode dynamics

In the previous section, we found that the dynamics of the model are driven by 𝑑 independent

ODEs where the weights either converge to the regularized target 𝐴𝜆∗ or to zero. Since all the

tasks in the diagonal setting are orthogonal to one-another, the only question for consecutive

episode dynamics is whether any of the weights ever pass the below the event horizon ℎ. To

adequately answer this question, we can frame it in turns of the time to reach the event horizon.

Proposition 4.8. If 𝑃𝑖 = 0, the time it takes to reach the event horizon using gradient descent is

𝑡 =
ln(𝐴𝜃,𝑖 (0)) − 𝐿

𝐿−2
(
ln(2𝜆) − ln(𝐴∗,𝑖)

)
2𝜂𝜆𝐿

Proof. For 𝑃𝑖 = 0, we can solve for 𝐴𝜃,𝑖 (𝑡) with a learning rate 𝜂.

𝑑𝐴𝜃,𝑖

𝑑𝑡
= −2𝜂𝜆𝐿𝐴𝜃,𝑖

𝐴𝜃,𝑖 (𝑡) = 𝐴𝜃,𝑖 (0)𝑒−2𝜂𝜆𝐿𝑡

Using gradient descent, the number of steps to pass the event horizon is

𝑡 =
ln(𝐴𝜃,𝑖 (0)) − ln(ℎ)

2𝜂𝜆𝐿

Using our previous approximation for ℎ, we get

𝑡 =
ln(𝐴𝜃,𝑖 (0)) − 𝐿

𝐿−2
(
ln(2𝜆) − ln(𝐴∗,𝑖)

)
2𝜂𝜆𝐿

□

For 𝜆 ≪ 1, the time it takes to reach the event horizon is of the order O
(
ln( 1

𝜆
)
)
, which is very

large, but can be achieved reasonably if training for exponential time.
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4.5 Stochastic gradient descent

If we were to sample a new projection at each training step, the learning dynamics can be rein-

terpreted as the dynamics of stochastic gradient descent. Let the rank of 𝑃 match the number of

unique tasks selected by a batch size of 𝑏, can we measure the probability of catastrophic weight

loss?

Proposition 4.9. The dynamics of stochastic gradient descent in the regularized deep diagonal case

can be translated into a gambler’s ruin problem.

Proof. The gambler’s ruin problem is a binomial random walk problem where binomial probabil-

ity and step size at each discrete time 𝑡 is variable. In the case of using SGD with weight decay to

train a deep diagonal network, the game becomes how many steps are remaining for each singu-

lar value before the fall below the event horizon. By using time instead of distance, it becomes a

standard version of gamblers ruin problem because each step has the same "cost" of one weight

decay step, and has a chance to hit the lottery and increase overall, extending the time it would

take to reach the event horizon.

Let’s formalize the concept of cost and lottery in the context of the deep diagonal model. Let

𝑡𝑖 be the time it would take singular value 𝜎𝑖 to decay past the event horizon if 𝑃𝑖 keeps getting

sampled as zero. Finally, let 𝜂 be the learning rate for SGD, the gradient step of 𝐴𝜃,𝑖 is as follows

𝐴𝜃,𝑖,𝑡+1 = 𝐴𝜃,𝑖,𝑡 − 2𝐿𝜂
(
𝑃𝑖 · 𝐴

2(𝐿−1)
𝐿

𝜃,𝑖,𝑡
(𝐴𝜃,𝑖,𝑡 −𝐴∗,𝑖) + 𝜆𝐴𝜃,𝑖,𝑡

)
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𝐴𝜃,𝑖,𝑡+1 = 𝐴𝜃,𝑖,𝑡 − 2𝐿𝜂𝜆𝐴𝜃,𝑖,𝑡

= 𝐴𝜃,𝑖,𝑡 (1 − 2𝐿𝜂𝜆)

= 𝐴∗,𝑖 (1 − 2𝐿𝜂𝜆)𝑡+1

𝐴𝜃,𝑖,𝑡 ≤ ℎ

(1 − 2𝐿𝜂𝜆)𝑡 ≤ ℎ

𝐴∗,𝑖

𝑡 ≥ ln(ℎ) − ln(𝐴∗,𝑖)
ln(1 − 2𝐿𝜂𝜆)

To measure the lottery, the amount by which 𝑡 increases when 𝑃𝑖 = 1, we need to solve for

the difference in time between 𝑃𝑖 = 0 and 𝑃𝑖 = 1.

𝐴𝜃,𝑖,𝑡 (1 − 2𝐿𝜂𝜆) = 𝐴𝜃,𝑖,𝑡+1+𝑠

= 𝐴𝜃,𝑖,𝑡+1 (1 − 2𝐿𝜂𝜆)𝑠

=

(
𝐴𝜃,𝑖,𝑡 (1 − 2𝐿𝜂𝜆) − 2𝐿𝜂𝑃𝑖 · 𝐴

2(𝐿−1)
𝐿

𝜃,𝑖,𝑡
(𝐴𝜃,𝑖,𝑡 −𝐴∗,𝑖)

)
(1 − 2𝐿𝜂𝜆)𝑠

𝑠 =

ln
(
𝐴𝜃,𝑖,𝑡 (1 − 2𝐿𝜂𝜆)

)
− ln

(
𝐴𝜃,𝑖,𝑡 (1 − 2𝐿𝜂𝜆) − 2𝐿𝜂𝑃𝑖 · 𝐴

2(𝐿−1)
𝐿

𝜃,𝑖,𝑡
(𝐴𝜃,𝑖,𝑡 −𝐴∗,𝑖)

)
ln(1 − 2𝐿𝜂𝜆)

= 1 −
ln

(
(1 − 2𝐿𝜂𝜆) + 2𝐿𝜂𝑃𝑖 · 𝐴

𝐿−2
𝐿

𝜃,𝑖,𝑡
(𝐴∗,𝑖 −𝐴𝜃,𝑖,𝑡 )

)
ln(1 − 2𝐿𝜂𝜆)

≤ 1 −
ln

(
(1 − 2𝐿𝜂𝜆) + 2𝐿𝜂𝑃𝑖 · 𝐴∗,𝑖

)
ln(1 − 2𝐿𝜂𝜆)

By bounding the positive effect of the 𝑃𝑖 = 1, we can study the dynamics of forgetting by

analyzing the binomial walk in the following algorithm. Let’s assume a uniform distribution of
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(a) 𝜆 = 5 × 10−2 (b) 𝜆 = 6 × 10−2

Figure 4.1: SGD simulation on deep diagonal network (𝑏 = 1, 𝑑 = 8)

1/𝑑 for each sample point. Thus, for a batch size of 𝑏, the probability P(𝑃𝑖 = 1) = 1
𝑑𝑏

INITIALIZE 𝑋𝑖 =
ln(ℎ) − ln(𝐴𝜃,𝑖 (𝑡 = 0))

ln(1 − 2𝐿𝜂𝜆)

At each time t:

IF 𝑋𝑖 ≤ 0 THEN HALT

ELSE

𝑋𝑖 = 𝑋𝑖 − 1 with probability 1 − 1
𝑑𝑏

𝑋𝑖 = 𝑋𝑖 −
ln

(
1 + 2𝐿𝜂 (𝐴∗,𝑖 − 𝜆)

)
ln(1 − 2𝐿𝜂𝜆) with probability

1
𝑑𝑏

It is a binomial walk with a halting condition, thus it is a gambler’s ruin problem. This also

reveals an inverse relationship between batch size and dimensionality. □

In Figure 4.1 we see how small changes in 𝜆, 𝑏 and 𝑑 could have dramatic consequences when

it comes to catastrophic weight loss.
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5 | General Deep Case

Unlike the previous chapters, the general case does not have dynamics that are simple to charac-

terize due to two competing non-linear dynamics: the rotation of singular vectors, and the change

in singular values. Although Chapter 3 experienced both of these phenomena, its dynamics were

linear. In the general case, the dynamics are characterized by the following equation.

𝑑𝐴𝜃

𝑑𝑡
=

𝐿∑︁
ℓ=1
(𝐴𝜃𝐴

𝑇
𝜃
) ℓ−1𝐿 𝑃 (𝐴∗ −𝐴𝜃 ) (𝐴𝑇

𝜃
𝐴𝜃 )

𝐿−ℓ
𝐿 − 2𝜆𝐿𝐴𝜃 (5.1)

5.1 Single episode dynamics

Lemma 5.1. All the fixed points of the regularized cost satisfy that 𝐴𝜃 is in the image of 𝑃 .

Proof. The training dynamics are defined as gradient flow with respect to the parameters, so lets

start with the dynamics of each layer𝑊ℓ .

𝑑𝑊ℓ

𝑑𝑡
= −∇𝑊ℓ

𝐶 (𝑃, 𝜃, 𝜆)

= −∇
(
| |𝑃 (𝑊ℓ−𝑊ℓ𝑊ℓ+ −𝐴∗) | |2 +

𝐿∑︁
𝑖=1
| |𝑊𝑖 | |2

)
=𝑊 𝑇

ℓ−𝑃 (𝐴∗ −𝐴𝜃 )𝑊 𝑇
ℓ+ − 2𝜆𝑊ℓ
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Using the chain rule and the balancedness assumption, we are able to solve for the dynamics

of the model 𝐴𝜃 as a function of just 𝑃 , 𝐴∗ and 𝐴𝜃 itself (with the additional constants 𝜆 and 𝐿).

𝑑𝐴𝜃

𝑑𝑡
=

𝐿∑︁
ℓ=1

𝑊ℓ−
𝑑𝑊ℓ

𝑑𝑡
𝑊ℓ+

=

𝐿∑︁
ℓ=1
(𝑊1𝑊

𝑇
1 )ℓ−1𝑃 (𝐴∗ −𝐴𝜃 ) (𝑊 𝑇

𝐿𝑊𝐿)𝐿−ℓ − 2𝜆𝐿𝐴

=

𝐿∑︁
ℓ=1
(𝐴𝜃𝐴

𝑇
𝜃
) ℓ−1𝐿 𝑃 (𝐴∗ −𝐴𝜃 ) (𝐴𝑇

𝜃
𝐴𝜃 )

𝐿−ℓ
𝐿 − 2𝜆𝐿𝐴𝜃

Let the converged solution be written as the sum 𝐴𝜃 = 𝑃𝐴 + (𝐼 − 𝑃)𝐴 for some full rank 𝐴.

Here we show that weight decay drives (𝐼 − 𝑃)𝐴 to zero.

𝑑𝐴𝜃

𝑑𝑡
=

𝐿∑︁
ℓ=1

(
𝑃 (𝐴𝐴𝑇 ) ℓ−1𝐿 𝑃 + (𝐼 − 𝑃) (𝐴𝐴𝑇 ) ℓ−1𝐿 (𝐼 − 𝑃)

)
𝑃 (𝐴∗ −𝐴𝜃 ) (𝐴𝑇

𝜃
𝐴𝜃 )

𝐿−ℓ
𝐿 − 2𝜆𝐿𝐴𝜃

=

𝐿∑︁
ℓ=1

𝑃 (𝐴𝐴𝑇 ) ℓ−1𝐿 𝑃 (𝐴∗ −𝐴) (𝐴𝑇𝑃𝐴 +𝐴𝑇 (𝐼 − 𝑃)𝐴) 𝐿−ℓ𝐿 − 2𝜆𝐿𝑃𝐴 − 2𝜆𝐿(𝐼 − 𝑃)𝐴

Since 𝑃 is orthogonal to (𝐼 − 𝑃), then for the dynamics to converge to a fixed point the model

must be in the image of 𝑃 .

□

Lemma 5.1 proves even in the general case, weight decay still exhibits an explicit low rank

bias.

Theorem 5.2. The event horizon exists in the general deep case as a function of 𝐴∗

Proof. In the general case, the event horizon is the point past which the SGD dynamics are unable
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to recover from the rank underestimate of the model. To study the rank, we can analyze the

dynamics of the singular values of 𝐴𝜃 .

𝜎𝑖 = 𝑢𝑇𝑖 𝐴𝜃𝑣𝑖

𝑑𝜎𝑖

𝑑𝑡
=
𝑑𝑢𝑇𝑖

𝑑𝑡
𝐴𝜃𝑣𝑖 + 𝑢𝑇𝑖

𝑑𝐴𝜃

𝑑𝑡
𝑣𝑖 + 𝑢𝑇𝑖 𝐴𝜃

𝑑𝑣𝑖

𝑑𝑡

The vectors 𝑢𝑖 and 𝑣𝑖 exist on a sphere of radius 1. Their dynamics exist on the tangent plane at

the point 𝑢𝑖 and 𝑣𝑖 respectively. This is because

𝑑

𝑑𝑡
⟨𝑢,𝑢⟩ = 𝑑

𝑑𝑡
1 = 0

By definition of their tangent plane, the dynamics are orthogonal 𝑢𝑖 and 𝑣𝑖 respectively. Since 𝑢𝑖

and 𝑣𝑖 are columns of a orthogonal basis for their space, the dynamics 𝑑𝑢𝑖
𝑑𝑡

and 𝑑𝑣𝑖
𝑑𝑡

can be written

as a linear combination of the columns of𝑈 and 𝑉 respectively.

𝑑𝑢𝑇𝑖

𝑑𝑡
=

𝑑∑︁
𝑗=1
⟨
𝑑𝑢𝑇𝑖

𝑑𝑡
,𝑢𝑇𝑗 ⟩𝑢𝑇𝑗

=

𝑑∑︁
𝑗≠𝑖

⟨
𝑑𝑢𝑇𝑖

𝑑𝑡
,𝑢𝑇𝑗 ⟩𝑢𝑇𝑗

35



Substituting into our equation for 𝑑𝜎𝑖
𝑑𝑡
, we get the following simplifications.

𝑑𝑢𝑇𝑖

𝑑𝑡
𝐴𝜃𝑣𝑖 =

𝑑∑︁
𝑗≠𝑖

⟨
𝑑𝑢𝑇𝑖

𝑑𝑡
,𝑢𝑇𝑗 ⟩𝑢𝑇𝑗 𝐴𝜃𝑣𝑖

=

𝑑∑︁
𝑗≠𝑖

⟨
𝑑𝑢𝑇𝑖

𝑑𝑡
,𝑢𝑇𝑗 ⟩𝜎 𝑗𝑣

𝑇
𝑗 𝑣𝑖

= 0

Similarly, 𝑑𝑣𝑖
𝑑𝑡

=
∑𝑑

𝑗≠𝑖 ⟨
𝑑𝑣𝑖
𝑑𝑡
, 𝑣 𝑗 ⟩𝑣 𝑗 which leads to 𝑢𝑇𝑖 𝐴𝜃

𝑑𝑣𝑖
𝑑𝑡

= 0. This leaves us with one term to study.

𝑑𝜎𝑖

𝑑𝑡
= 𝑢𝑇𝑖

𝑑𝐴𝜃

𝑑𝑡
𝑣𝑖

= 𝑢𝑇𝑖

(
𝐿∑︁
ℓ=1
(𝑊1𝑊

𝑇
1 )ℓ−1𝑃 (𝐴∗ −𝐴𝜃 ) (𝑊 𝑇

𝐿𝑊𝐿)𝐿−ℓ − 2𝜆𝐿𝐴𝜃

)
𝑣𝑖

=

𝐿∑︁
ℓ=1

𝑢𝑇𝑖 𝑈1𝑆
2
𝐿
(ℓ−1)

1 𝑈𝑇
1 𝑃 (𝐴∗ −𝐴𝜃 )𝑉𝐿𝑆

2
𝐿
(𝐿−ℓ)

𝐿
𝑉𝑇
𝐿 𝑣𝑖 − 2𝜆𝐿𝜎𝑖

=

𝐿∑︁
ℓ=1

𝑢𝑇𝑖 𝑈1𝑆
2
𝐿
(ℓ−1)

1 𝑈𝑇
1 𝑃 (𝐴∗ −𝐴𝜃 )𝑉𝐿𝑆

2
𝐿
(𝐿−ℓ)

𝐿
𝑉𝑇
𝐿 𝑣𝑖 − 2𝜆𝐿𝜎𝑖

=

𝐿∑︁
ℓ=1

𝜎
2
𝐿
(ℓ−1)

𝑖
𝑢𝑇𝑖 𝑃 (𝐴∗ −𝐴𝜃 )𝑣𝑖𝜎

2
𝐿
(𝐿−ℓ)

𝑖
− 2𝜆𝐿𝜎𝑖

= 𝐿𝜎
2(𝐿−1)

𝐿

𝑖
(𝑢𝑇𝑖 𝑃𝐴∗𝑣𝑖 − 𝑢𝑖𝑃𝐴𝜃𝑣𝑖) − 2𝜆𝐿𝜎𝑖

≤ �̂�∗𝐿𝜎
2(𝐿−1)

𝐿

𝑖
− 2𝜆𝐿𝜎𝑖

From Property A.7 we get that the rate of change for each of the singular values can be

bounded by the expression in terms of the largest singular value �̂�∗ of 𝐴∗. This enables us to

define a region in which no rank expansion is possible (a region of the event horizon).
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For 𝐿 > 2 and 𝜎𝑖 > 0

𝑑𝜎𝑖

𝑑𝑡
< 0

�̂�∗𝐿𝜎
𝐿−2
𝐿

𝑖
− 2𝜆𝐿 < 0

𝜎
𝐿−2
𝐿

𝑖
< 2

𝜆

�̂�∗

□

Unfortunately, since the general case still has an event horizon, the low rank bias is a bias

towards the irrecoverable catastrophic weight loss. To be able to find the singular values most

likely to cross the event horizon, we can rely on the von Neumann-Wigner’s non crossing rule

[von Neuman and Wigner 1929], which states that singular values can not cross each other. In

other words, the smallest singular value will always remain the smallest, and thus it will be the

first singular value to cross the event horizon.

Conjecture 5.3 (von Neumann-Wigner Non-crossing rule). The distinct singular values of deep

linear networks can not cross each other.

Although it is difficult to prove for deep linear models. The following analysis strongly sug-

gests its existence.

Analysis. We can observe the non-crossing behavior of the deep network by analyzing the dy-

namics of the singular-vectors.
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First let’s find a way to solve for eigenvectors of time-varying matrix𝑀

𝑀𝑣 = 𝜆𝑣

0 = (𝑀 − 𝜆𝐼 )𝑣

0 =
𝑑

𝑑𝑡
((𝑀 − 𝜆𝐼 )𝑣)

(𝑀 − 𝜆𝐼 )𝑑𝑣
𝑑𝑡

=

(
𝑑

𝑑𝑡
(𝑀 − 𝜆𝐼 )

)
𝑣

Let 𝑀 = 𝐴𝐴𝑇 or 𝑀 = 𝐴𝑇𝐴 depending on whether we are interested in the right singular-

vectors or left singular-vectors. Thus the matrix is positive semi-definite symmetric, the eigen-

values can be converted to singular values 𝜆 = 𝜎2 and the eigenvectors are singular-vectors. From

the previous proof for Theorem 5.2, we can write 𝑑𝑣𝑖
𝑑𝑡

as follows.

𝑑𝑣𝑖

𝑑𝑡
=

∑︁
𝑗≠𝑖

⟨𝑑𝑣𝑖
𝑑𝑡

, 𝑣 𝑗 ⟩𝑣 𝑗

To solve for 𝑑𝑣𝑖
𝑑𝑡
, all we need is to solve for the set of inner-products ⟨𝑑𝑣𝑖

𝑑𝑡
, 𝑣 𝑗 ⟩, for all 𝑗 ≠ 𝑖 .

(𝑀 − 𝜎2
𝑖 𝐼 )

𝑑𝑣𝑖

𝑑𝑡
=

(
𝑑

𝑑𝑡
(𝜎2

𝑖 𝐼 −𝑀)
)
𝑣𝑖∑︁

𝑗≠𝑖

⟨𝑑𝑣𝑖
𝑑𝑡

, 𝑣 𝑗 ⟩(𝑀 − 𝜎2
𝑖 𝐼 )𝑣 𝑗 = 𝑣𝑖

𝑑

𝑑𝑡
(𝑣𝑇𝑖 𝑀𝑣𝑖) −

𝑑𝑀

𝑑𝑡
𝑣𝑖∑︁

𝑗≠𝑖

⟨𝑑𝑣𝑖
𝑑𝑡

, 𝑣 𝑗 ⟩(𝜎2
𝑗 − 𝜎2

𝑖 )𝑣 𝑗 = 𝑣𝑖𝑣
𝑇
𝑖

𝑑𝑀

𝑑𝑡
𝑣𝑖 −

𝑑𝑀

𝑑𝑡
𝑣𝑖

⟨𝑑𝑣𝑖
𝑑𝑡

, 𝑣 𝑗 ⟩(𝜎2
𝑗 − 𝜎2

𝑖 ) = 𝑣𝑇𝑗

(
𝐼 − 𝑣𝑖𝑣𝑇𝑖

) 𝑑𝑀
𝑑𝑡

𝑣𝑖

(𝜎2
𝑗 − 𝜎2

𝑖 )⟨
𝑑𝑣𝑖

𝑑𝑡
, 𝑣 𝑗 ⟩ = 𝑣𝑇𝑗

𝑑𝑀

𝑑𝑡
𝑣𝑖

Note the symmetry ⟨𝑑𝑣𝑖
𝑑𝑡
, 𝑣 𝑗 ⟩ = −⟨

𝑑𝑣 𝑗
𝑑𝑡
, 𝑣𝑖⟩. The symmetrical nature of these dynamics enable us

to study them in pairs.
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Let’s begin by analyzing the dynamics of the left singular-vectors. Due to the balancedness

assumption, we have that the left singular vectors of𝐴𝜃 are equivalent to the left singular vectors

of𝑊1. Thus we can substitute𝑀 =𝑊1𝑊
𝑇
1 to find the dynamics.

𝑑𝑊1

𝑑𝑡
= −∇𝑊1𝐶 (𝑃, 𝜃, 𝜆)

= 𝑃 (𝐴∗ −𝐴𝜃 )𝑊 𝑇
1+ − 2𝜆𝑊1

𝑑

𝑑𝑡
𝑊1𝑊

𝑇
1 =

𝑑𝑊1

𝑑𝑡
𝑊 𝑇

1 +𝑊1
𝑑𝑊 𝑇

1
𝑑𝑡

= 𝑃 (𝐴∗ −𝐴𝜃 )𝐴𝑇 +𝐴(𝐴𝑇
∗ −𝐴𝑇

𝜃
)𝑃 − 4𝜆𝑊1𝑊

𝑇
1

Substituting back into the equation for the left singular-vectors 𝑢𝑖 .

(𝜎2
𝑗 − 𝜎2

𝑖 )⟨
𝑑𝑢𝑖

𝑑𝑡
,𝑢 𝑗 ⟩ = 𝑢𝑇𝑗

𝑑𝑀

𝑑𝑡
𝑢𝑖

= 𝑢𝑇𝑗

(
𝑃 (𝐴∗ −𝐴𝜃 )𝐴𝑇 +𝐴(𝐴𝑇

∗ −𝐴𝑇
𝜃
)𝑃 − 4𝜆𝑊1𝑊

𝑇
1

)
𝑢𝑖

= (𝜎2𝐿
𝑖 + 𝜎2𝐿

𝑗 )𝑢𝑇𝑗 𝑃𝑢𝑖 − 𝜎𝐿
𝑖 𝑢

𝑇
𝑗 𝑃𝐴∗𝑣𝑖 − 𝜎𝐿

𝑗 𝑣
𝑇
𝑗 𝐴

𝑇
∗𝑃𝑢𝑖

Notice the singularity as 𝜎 𝑗 is close to 𝜎𝑖 . For 𝜎𝑖 and 𝜎 𝑗 bounded, then as their gap gets smaller,

for |𝜎 𝑗 − 𝜎𝑖 | ≤ 𝜖 , we find ⟨𝑑𝑢𝑖
𝑑𝑡
, 𝑢 𝑗 ⟩ = O( 1𝜖 ). By symmetry, ⟨𝑑𝑢 𝑗

𝑑𝑡
, 𝑢𝑖⟩ = O( 1𝜖 ) also. This signifies that

when the gap gets small between two singular values, their respective singular-vectors rotate

approximately in their plane.

Now, let’s similarly analyze the right singular-vectors. Due to balancedness, the right singular

vectors of 𝐴𝜃 are equivalent to that of𝑊𝐿 . Thus we can substitute𝑀 =𝑊 𝑇
𝐿
𝑊𝐿 .
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𝑑𝑊𝐿

𝑑𝑡
= −∇𝑊𝐿

𝐶 (𝑃, 𝜃, 𝜆)

=𝑊 𝑇
𝐿−𝑃 (𝐴∗ −𝐴𝜃 ) − 2𝜆𝑊𝐿

𝑑

𝑑𝑡
𝑊 𝑇

𝐿𝑊𝐿 = 𝐴𝑇𝑃 (𝐴∗ −𝐴𝜃 ) + (𝐴𝑇
∗ −𝐴𝑇

𝜃
)𝑃𝐴 − 4𝜆𝑊 𝑇

𝐿𝑊𝐿

Substituting back into the equation for the right singular-vectors 𝑣𝑖 .

(𝜎2
𝑗 − 𝜎2

𝑖 )⟨
𝑑𝑣𝑖

𝑑𝑡
, 𝑣 𝑗 ⟩ = 𝑣𝑇𝑗

𝑑𝑀

𝑑𝑡
𝑣𝑖

= 𝑣𝑇𝑗

(
𝐴𝑇𝑃 (𝐴∗ −𝐴𝜃 ) + (𝐴𝑇

∗ −𝐴𝑇
𝜃
)𝑃𝐴 − 4𝜆𝑊 𝑇

𝐿𝑊𝐿

)
𝑣𝑖

= 2𝜎𝐿
𝑖 𝜎

𝐿
𝑗 𝑢

𝑇
𝑗 𝑃𝑢𝑖 − 𝜎𝐿

𝑖 𝑢
𝑇
𝑗 𝑃𝐴∗𝑣𝑖 − 𝜎𝐿

𝑗 𝑣
𝑇
𝑗 𝐴

𝑇
∗𝑃𝑢𝑖

Here we observe the same near-crossing acceleration that was noted above. To achieve non-

crossing between two singular values that are on course to cross, these rotations along both the

left and right singular vectors would need to halt, and/or reverse, the dynamics of 𝜎𝑖 and 𝜎 𝑗 .

Let 𝜎𝑖 < 𝜎 𝑗 and 𝑑𝜎𝑖
𝑑𝑡

>
𝑑𝜎 𝑗

𝑑𝑡
.

𝐿𝜎
2(𝐿−1)

𝐿

𝑖
(𝑢𝑇𝑖 𝑃𝐴∗𝑣𝑖 − 𝑢𝑖𝑃𝐴𝜃𝑣𝑖) − 2𝜆𝐿𝜎𝑖 > 𝐿𝜎

2(𝐿−1)
𝐿

𝑗
(𝑢𝑇𝑗 𝑃𝐴∗𝑣 𝑗 − 𝑢 𝑗𝑃𝐴𝜃𝑣 𝑗 ) − 2𝜆𝐿𝜎 𝑗

𝑢𝑇𝑖 𝑃 (𝐴∗ −𝐴𝜃 )𝑣𝑖 > 𝑢𝑇𝑗 𝑃 (𝐴∗ −𝐴𝜃 )𝑣 𝑗

If we analyze a single gradient step, we get


𝑢𝑇𝑖 𝑃 (𝐴∗ −𝐴𝜃 )𝑣𝑖 → (𝑢𝑖 +

1
𝜖
𝑢 𝑗 )𝑇𝑃 (𝐴∗ −𝐴𝜃 ) (𝑣𝑖 +

1
𝜖
𝑣 𝑗 ) ≈ 𝑢𝑇𝑗 𝑃 (𝐴∗ −𝐴𝜃 )𝑣 𝑗 ,

𝑢𝑇𝑗 𝑃 (𝐴∗ −𝐴𝜃 )𝑣 𝑗 → (𝑢 𝑗 +
1
𝜖
𝑢𝑖)𝑇𝑃 (𝐴∗ −𝐴𝜃 ) (𝑣 𝑗 +

1
𝜖
𝑣𝑖) ≈ 𝑢𝑇𝑖 𝑃 (𝐴∗ −𝐴𝜃 )𝑣𝑖 .

Thus, as they get closer, instead of crossing they swap momentum. This behavior is also
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observed empirically by tracking the singular vectors for two close singular values. □

The consequences of having non-crossing is that the large singular values will always remain

the large ones. This creates the idea of dominant singular values, the top 𝑘 matching the rank of

the current task, and the suppressed ones, the ones required tomatch the rank of the true function,

yet are not being actively promoted during training. Nonetheless, to fit the true function, both

the dominant and suppressed singular values need to match the distribution of singular values of

𝐴∗. The question then becomes, if the suppressed singular values are close to the event horizon,

can they be increased? Figure 5.1 shows empirically that if the new task is particularly aligned

to a suppressed singular value, the increase it can experience is at least of the same order as

itself. This is good news because it can increase exponentially if the new tasks are orthogonal to

previous tasks (see more in Chapter 6).

Figure 5.1: The single-episode increase observed of the small singular value which is initially very aligned
with the task (for different principal angles)

However there is one caveat to learning a full rank solution.

Theorem 5.4 (Determinant lock). The determinant of the model can not change sign during train-

ing. If the true function has a determinant of the opposite sign then the model can not fit the true
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function.

Proof. The model 𝐴𝜃 varies smoothly in time, thus so does its determinant. By the midpoint

theorem, for the determinant to change sign it must pass zero. The determinant can only be zero

if at least one of its eigenvalues is zero. That would place at least one singular value inside the

event horizon, thus the model can not find the full rank solution. □

Although Theorem 5.4 finds that the model can not fit the true function for half the space of

possible initializations, the model is able to fit the best rank Rank(𝐴∗) − 1 approximation of the

true function, since both would have a determinant of zero.

5.2 2-dimensional system

The nature of two sets of singular values, dominant and suppressed, implies that the problem

of keeping the rank high is similar to a 2-dimensional problem. Although the behavior is not

simplified, lowering the dimensionality of the problem allows for more interpretable empirical

results, as we saw in Figure 5.1, and as is explored in more depth in Chapter 6.

In this way, the dynamics of the model is a combination of its extreme regimes, when the

new task is perfectly aligned to dominant singular values, and when it is aligned to suppressed

singular values. Those cases reduce to the diagonal case which suggest that the more aligned it

is to dominant singular values, the less the model will change, and thus the it will not experience

forgetting, however that could quickly lead to the suppressed singular values passing the event

horizon. In the other case where the new task is nearly orthogonal to the previous one, the

suppressed singular values can increase. Between these two extreme regimes, the added freedom

to rotate the singular vectors leads the model to do a mix of both. It is this rotation that is the

source of Catastrophic Forgetting. The further the suppressed singular values are from their

matching true singular value the more rotation the model will experience, and thus the more

forgetting there will be.
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5.3 Catastrophic weight loss

Due to the existence of the event horizon from Theorem 5.2, it is worth questioning whether it is

reasonable for catastrophic weight loss to occur. In the previous chapter, we were able to reduce

this question to a gambler’s ruin problem due to the orthogonality of the problem. However,

the general case is more difficult because the projection is no longer binary, we instead need to

consider the angles between 𝑃 , 𝐴∗ and 𝐴𝜃 .

Proposition 5.5. Training high dimensional problems with low batch sizes over exponential train-

ing time has a large probability of catastrophic weight loss.

Proof. For batch size of 1, a projection can be viewed as 𝑃𝑣𝑣𝑇 for some unit vector 𝑣 . In the naive

case where each 𝑣𝑖 is sampled i.i.d, you would ideally want to uniformly cover the input space

which lies on a d-dimensional sphere S𝑑−1.

The idea is that we have

𝑑𝜎𝑖

𝑑𝑡
= 𝐿𝜎

2(𝐿−1)
𝐿

𝑖
(𝑢𝑇𝑖 𝑃𝐴∗𝑣𝑖 − 𝑢𝑖𝑃𝐴𝜃𝑣𝑖) − 2𝜆𝐿𝜎𝑖

We can bound the largest singular value, and perhaps the smallest. By sampling 𝑃 = 𝑣𝑣𝑇

uniformly, the dynamics should be really slow.

𝑑𝜎𝑖

𝑑𝑡
= ⟨𝑢𝑖, 𝑣⟩𝐿𝜎

2− 1
𝐿

𝑖
𝑣𝑇𝐴∗𝑣𝑖 − 𝜎

3− 1
𝐿

𝑖
⟨𝑢𝑖, 𝑣⟩2 − 2𝜆𝐿𝜎𝑖

To find a bound for the probability that P(𝑑𝜎𝑖
𝑑𝑡

< 0), we can relax the constraint.
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P(𝑑𝜎𝑖
𝑑𝑡

< 0) = P
(
⟨𝑢𝑖, 𝑣⟩𝐿𝜎

2− 1
𝐿

𝑖
𝑣𝑇𝐴∗𝑣𝑖 − 𝜎

3− 1
𝐿

𝑖
⟨𝑢𝑖, 𝑣⟩2 < 2𝜆𝐿𝜎𝑖

)
≥ P

(
⟨𝑢𝑖, 𝑣⟩𝜎

1− 1
𝐿

𝑖
𝑣𝑇𝐴∗𝑣𝑖 < 2𝜆

)
≥ P

(
|⟨𝑢𝑖, 𝑣⟩|𝜎

1− 1
𝐿

𝑖
𝜎∗,1 < 2𝜆

)
≥ P ©­«|⟨𝑢𝑖, 𝑣⟩| < 2𝜆

𝜎
1− 1

𝐿

𝑖
𝜎∗,1

ª®¬
The mass of |⟨𝑢𝑖, 𝑣⟩| ∼ 1√

𝑑
goes to zero as the number of input dimensions increases. Thus the

probability that |⟨𝑢𝑖, 𝑣⟩| is less than some constant of order O( 𝜆
𝜎∗,1
) is non-negligible, especially

for high-dimensional problems.

For larger batch sizes, the projection can be decomposed into 𝑃 = 𝑉𝑉𝑇 where𝑉 is an orthog-

onal basis of its image. In this case we can similarly bound the probability that a singular value

decreases using principal angles.

P(𝑑𝜎𝑖
𝑑𝑡

< 0) = P
(
𝑢𝑇𝑖 𝑉𝐿𝜎

2− 1
𝐿

𝑖
𝑣𝑇𝐴∗𝑣𝑖 − 𝜎

3− 1
𝐿

𝑖
| |𝑉𝑢𝑇𝑖 | |2 < 2𝜆𝐿𝜎𝑖

)
≥ P ©­«| |𝑉𝑇𝑢𝑖 | | <

2𝜆

𝜎
1− 1

𝐿

𝑖
𝜎∗,1

ª®¬
By symmetry, the distribution of the principal angle is similar to the distribution of a dimen-

sionally reduced inner product, | |𝑉𝑇𝑢𝑖 | | ≈ 1√
𝑑−Rank(𝑉 )

. For a batch size 𝑏, we have Rank(𝑉 ) ≤ 𝑏,

so if the batch size does not grow proportionally with the dimensionality of the problem, the

same issue of decreasing singular values persists.

To achieve catastrophicweight loss, these decreases need to occur consecutively. Since batches
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are usually drawn independently, the probability that these singular values decrease over con-

secutive steps is exponential.

□

Although Proposition 5.5 is pessimistic, it only applies to lifelong learners that train for an

unbounded amount of time. In most other real scenarios, as long as the batch size is not 1, and

the training time is not exponential in the order of ln
( 1
𝜆

)
, then catastrophic weight loss is not a

reasonable concern.
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6 | Experiments

6.1 Synthetic data

The following graphs typically refer to diagnostics, performance and forgetting. These are de-

fined as follows:

• Diagnostics: the singular values of the model over the course of training

• Performance: the loss, a.k.a the unregularized cost of the model over the course of training

• Forgetting: for each task, it is the difference in performance between the current model and

that of the model at the end of the episode in which the task was trained.

6.1.1 2-dimensional

One of the conveniences of 2-dimensional matrices is that each singular vector can be character-

ized by a single angle. In that way, the following figures will plot the dynamics of those angles,

named U angles and V angles respectively, over the entire training period to get a full picture of

how these rotations relate to the singular values (plotted under "diagnostics").

6.1.1.1 Single projection

Figure 6.1 reflects a typical episode in which the small singular value is very aligned with the task.

We see that the small singular value increases all while its eigenvectors rotate away from the task
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Figure 6.1: Single episode unregularized dynamics

it was aligned so well to. This phenomena is what produces forgetting. The large singular value

still reflects most of the mass of the matrix, and thus there is a balancing act between increasing

the mass of the small singular value with the correct orientation, and rotating the mass of the

large singular value to align with the task. Importantly, neither singular value will perfectly align

with the current task, primarily due to the nature of projections. Both the rotation of the large

singular value and the increase in the small singular value are positively affecting the projection

of the model 𝑃𝐴𝜃 . As that projection approaches the current task 𝑃𝐴∗ both the rotation and the

increase in singular values will cease.

6.1.1.2 Replay

When repeating the same experiment for multiple episodes, Figure 6.2 shows that as the small

singular value remains negligible, the large singular valuemust rotate to each new task, leading to

near-perfect forgetting after every episode. However, with each new episode the small singular

value continues to increase, to the point that eventually it finds its correct value, which puts

an end to the significant rotation from the initial period. You can clearly see that the rotations
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(U angles, and V angles), the forgetting, and the peak in performance at the start of every new

episode behave in the same way until the exact moment that the small singular value finds its

true value.

Figure 6.2: Consecutive episode unregularized dynamics with positive determinant

However, in Figure 6.3 we find that the small singular value is decreasing and tending to zero.

This demonstrates Theorem 5.4 which explains that the if the determinant is the wrong side, the

best approximation for the true function is to fit its best rank Rank(𝐴∗) solution. We can see

from the plots of "U angles" and "V angles" that the determinant can not change sign. Rotating

the matrix would flip the sign of both the eigenvalues so the determinant would remain the same

sign. Alternatively, for the eigenvalue to change its sign alone, it would need to pass through the

origin, which it can not. Since the associated singular value detracts from the performance, all it

can do is it make it go to zero, leading to catastrophic weight loss. The remaining singular value

is left to fully align with each new task, leading to full forgetting forever.
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Figure 6.3: Consecutive episode unregularized dynamics with negative determinant

6.1.2 High-dimensional

6.1.2.1 Single projection

In high dimensions, the initial transient rotational dynamics of the model become more visible.

To capture the rotation of each singular vector in this high dimensional setting, "U angles" and

"V angles" refers to the principal angles between each singular vector and the task. Figure 6.4

reflects the dynamics of a typical episode in high dimensions. The plot for forgetting is specifically

measuring the forgetting with respect to the kernel of the episode’s task, and we see that even in

high dimensions forgetting remains significant.

6.1.2.2 Replay

As in the 2-dimensional case, Figure 6.5 simulates the set of tasks is orthogonal. There are ten

tasks which are trained in order, for 4 repetitions. We see that the forgetting typically decreases

across the board with every full repetition. Additionally, the plots for forgetting show that Figure

6.5(a) converges towards the true function and the other is not able to, as found in Theorem
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Figure 6.4: Single-episode unregularized dynamics with matching determinant

(a)Matching determinant sign (b)Mismatching determinant sign

Figure 6.5: High dimensional consecutive episode unregularized dynamics with replay
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Figure 6.6: Consecutive episode overregularized dynamics

5.4. Figure 6.5(b) does show that forgetting becomes more sparse, this is due to the fact that

the model can still realistically fit all but one task perfectly. By the end of the simulation we

do see that roughly only one projection at a time is forgotten. We see a similar behavior in the

per-episode performance which becomes increasingly sparse with replay.

In Figure 6.6, we see the clear decay that occurs when there is too much weight decay in high

dimensions. It behaves worse than we predicted in Figure 4.1(b) with the gambler’s ruin problem.

The strong weight decay starts by overcoming the smallest singular values. This leads to a more

sparse model which increases the probability of catastrophic weight loss, and this continues until

the whole model is zeroed out. We can see the matrix tend to zero through the performance

which is leveling off at the same order of magnitude as it did for unseen tasks. Since weight

decay removes the weights in the kernel of a given episode’s task, the spike in forgetting with

each new episode roughly equals the loss of the zero matrix, i.e. | |𝑃𝐴∗ | |2.
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(a) Unregularized dynamics from 1-pass train-
ing

(b) Unregularized dynamics from 2-pass train-
ing

Figure 6.7: Comparison between 1-pass and 2-pass training

6.1.2.3 1-pass

In this sectionwe consider sampling projections uniformly at random to compare the use of 1-pass

vs 2-pass. Figure 6.7 compares the training dynamics for identical initial conditions. Both 1-pass

and 2-pass were trained using 20 projections total, however 1-pass was trained on 20 i.i.d uniform

projections whereas 2-pass was trained first on 10 i.i.d uniform projections before replaying each

projection once more. Figure 6.7(a) does not show any clear signs of convergence towards the

true task. On the other hand, Figure 6.7(b) clearly shows signs of convergence once the replays

begin. Overall, even with trading off data for replays, 2-pass vastly outperforms 1-pass for the

same training time, calling into question the use of 1-pass at all.

6.2 MNIST

Both Figure 6.8 and 6.9 show that linear models can achieve better than random performance on

MNIST. We do see that in the case of initializing with small weights led to a model that converged
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Figure 6.8: Learning MNIST by pairing digits 0-1, 2-3, etc.

faster and performs slightly better, even though the diagnostic trend of 6.9 is towads being less

sparse.
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Figure 6.9: Learning MNIST with some small initial singular values (pairing digits 0-1, 2-3, etc.)
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7 | Conclusion

The region of stability for safely training neural network gets smaller as they increase in scale.

The common attitude to always use weight-decay may be overused as we find that its bias to

low-rank representation can often lead to underestimating the rank of the problem. As well, we

find that Catastophic Forgetting usually occurs when the singular value decomposition is not

distributed similarly to that of the true task. Nevertheless, when training on new tasks, which

increases forgetting, the model continues to make progress towards approaching the singular

value distribution of true function. Thus Catastrophic Forgetting is not so catastrophic, all it

takes to correct is a disproportionately small amount of replay. In addition to reinforcing the

importance of replay, our work finds that the use of small batch sizes and 1-pass training could

lead to similar catastrophic rank underestimating results as we discussed with weight decay.
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A | Appendix: Projections

Projection matrices are a very useful way to characterize a linear subspace. In this Appendix, we

will enumerate and prove various properties of orthogonal projection matrices that were used

throughout this thesis.

Definition A.1 (Idempotence). By definition, a projection matrix 𝑃 is any idempotent matrix, i.e.

𝑃𝑃 = 𝑃 . The projection of some vector 𝑥 will be its projection onto the Im(𝑃) along the Ker(𝑃),

i.e. 𝑃𝑥 .

Property A.2 (Symmetry). A projection is an orthogonal projection matrix if and only if it is

symmetric, i.e. 𝑃𝑇 = 𝑃 .

Proof. For a projection to be orthogonal, its image and kernel must be orthogonal. In that case,

𝑃 can be written as the outerproduct of an orthogonal basis for its image, denoted as 𝑃 = 𝑉𝑉𝑇 .

Thus 𝑃 is symmetric. □

Property A.3 (Kernel Projection). If 𝑃 is an orthogonal projection, then (𝐼 − 𝑃) is an orthogonal

projection onto the kernel of 𝑃 .

Proof. For (𝐼 − 𝑃) to be an orthogonal projection, it must be idempotent and symmetric. As the

difference of two symmetric matrices, it is clearly symmetric. To show idempotence, we can take

its square.

(𝐼 − 𝑃) (𝐼 − 𝑃) = 𝐼 − 𝑃 − 𝑃 + 𝑃2 = 𝐼 − 𝑃
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To prove that it’s image is the kernel of 𝑃 , we show that any vector 𝑥 in the kernel of 𝑃 satisfies

(𝐼 − 𝑃)𝑥 = 𝑥 . This is clearly true since 𝑃𝑥 is defined to be 0. □

Property A.4 (Complimentarity). For an orthogonal projection 𝑃 , any matrix 𝐴 can be decom-

posed into the sum of its projections onto the the image of 𝑃 and the kernel of 𝑃 respectively.

Proof. The projection of 𝐴 on the image of 𝑃 is 𝑃𝐴. By Property A.3, the projection of 𝐴 on the

kernel of 𝑃 is (𝐼 − 𝑃)𝐴. The sum returns the original matrix 𝐴. □

Property A.5 (Principal angle). The principal angle between a vector 𝑥 and a subspace is defined

by the smallest angle between the two. For a subspace characterized by an orthonormal basis 𝑉 ,

the principal angle 𝜃 can be solved for using cos𝜃 =
| |𝑃𝑥 | |
| |𝑥 | |

Proof. The principal angle between a vector 𝑥 and basis 𝑉 is defined as | |𝑢 | | · | |𝑉𝑉𝑇𝑢 | | cos𝜃 =

⟨𝑢,𝑉𝑉𝑇𝑢⟩. Since 𝑉𝑉𝑇 is an orthogonal projection, the inner product simplifies to | |𝑉𝑉𝑇𝑢 | |2.

Lastly, since 𝑉 is normalized, it is the same as | |𝑉
𝑇𝑢 | |
| |𝑢 | | □

Property A.6 (Norm reduction). Projecting a matrix 𝐴 into a subspace Im(𝑃) can only reduce

its norm, or remain unchanged, i.e., | |𝑃𝐴| |2 ≤ ||𝐴| |2

Proof.

| |𝐴| |2 = | | (𝐼 + 𝑃 − 𝑃)𝐴| |2

= | |𝑃𝐴 + (𝐼 − 𝑃)𝐴| |2

= Tr(𝐴𝑇𝑃𝐴) + Tr(𝐴𝑇 (𝐼 − 𝑃)𝐴)

= | |𝑃𝐴| |2 + ||(𝐼 − 𝑃)𝐴| |2

≥ ||𝑃𝐴| |2

□

Property A.7 (Singular value reduction). Prove that |𝑢𝑇𝑃𝐴𝑣 | ≤ 𝜎1
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Proof. Let 𝐴 = 𝑈 Σ𝑉𝑇 be the singular value decomposition of 𝐴 ∈ R𝑑×𝑑 .

|𝑢𝑇𝑃𝐴𝑣 | = |𝑢𝑇𝑃𝑈 Σ𝑉𝑇 𝑣 |

= |⟨
√
Σ𝑈𝑇𝑃𝑢,

√
Σ𝑉𝑇 𝑣⟩|

≤ | |
√
Σ𝑈𝑇𝑃𝑢 | | · | |

√
Σ𝑉𝑇 𝑣 | | (Cauchy-Schwartz)

=

√√√
𝑑∑︁
𝑖=1

𝜎𝑖 ⟨𝑃𝑢,𝑢𝑖⟩2 ·

√√√
𝑑∑︁
𝑖=1

𝜎𝑖 ⟨𝑣, 𝑣𝑖⟩2

If we normalize each term by | |𝑈𝑇𝑃𝑢 | | and | |𝑉𝑇 𝑣 | | respectively, then the sums above can

be considered expectations, which are bounded by the largest element. In this case, the largest

element is first singular value 𝜎1. Note that since 𝑈 and 𝑉 are orthonormal matrices, we have

| |𝑈𝑇𝑃𝑢 | | = | |𝑃𝑢 | | ≤ | |𝑢 | | = 1 and | |𝑉𝑇 𝑣 | | = | |𝑣 | | = 1.

𝑢𝑇𝑃𝐴𝑣 ≤ 𝜎1 | |𝑃𝑢 | | ≤ 𝜎1

□

Property A.8 (Commuting projections). Two orthogonal projection matrices 𝑃1 and 𝑃2 will com-

mute if and only if they have the same eigenvectors.

Proof. By definition, an orthogonal projection is symmetric and idempotent so it can be decom-

posed using the singular value decomposition into 𝑃 = 𝑄Σ𝑄𝑇 , where Σ has all singular values

either 0 or 1. We can alternatively write this as

𝑃 =

[
𝑉Im 𝑉Ker

] 
𝐼 0

0 0



𝑉Im

𝑉Ker

 ,
where 𝑉Im is a basis for the for the range of 𝑃 and 𝑉Ker is an orthogonal basis for the kernel of
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𝑃 . Since the eigenvalues of 𝑃 are either 0 or 1, we have that 𝑥 is an eigenvector of 𝑃 if either

𝑥 ∈ Im(𝑃) or 𝑥 ∈ Ker(𝑃). Remark that Im(𝑃) is orthogonal to Ker(𝑃).

We have that 𝑃𝑥 ∈ Im(𝑃), so it can be decomposed into a linear combination of its eigenvec-

tors that have a eigenvalue of 1. Thus when multiplying two projections with the same eigen-

values, the resulting 𝑃1𝑃2𝑥 will be a linear combination of the eigenvectors that have a singular

value of 1 for both 𝑃1 and 𝑃2.

In this way, the product 𝑃1𝑃2 = 𝑃3 also has eigenvalues 𝜆 ∈ {0, 1}. The eigenvectors with an

eigenvalue of 1 are {𝑣 : 𝑣 ∈ (Im(𝑃1) ∩ Im(𝑃2)}. The eigenvectors with an eigenvalue of 0 are

{𝑣 : 𝑣 ∈ (Ker(𝑃1) ∪ Ker(𝑃2)}. Thus the product is also an orthogonal projection. We then have

𝑃1𝑃2 = 𝑃3 = 𝑃𝑇3 = 𝑃2𝑃1

□
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